62 research outputs found
Dual Oxidase Maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation
Background: Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. Results: To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. Conclusions: This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1. Β© 2014 Sandiford et al.; licensee BioMed Central Ltd
Dual Oxidase Maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation
Background: Dual oxidase maturation factor 1 (DUOXA1) has been associated with the maturation of the reactive oxygen species (ROS) producing enzyme, dual oxidase 1 (DUOX1) in the adult thyroid. However, ROS have also been implicated in the development of several tissues. We found that activated muscle satellite cells and primary myoblasts isolated from mice express robust levels of DUOXA1 and that its levels are altered as cells differentiate. Results: To determine whether DUOXA1 levels affect muscle differentiation, we used an adenoviral construct (pCMV5-DUOXA1-GFP) to drive constitutive overexpression of this protein in primary myoblasts. High levels of DUOXA1 throughout myogenesis resulted in enhanced H2O2 production, fusion defects, reduced expression of early (myogenin) and late (myosin heavy chain) markers of differentiation, and elevated levels of apoptosis compared to control cells infected with an empty adenoviral vector (pCMV5-GFP). DUOXA1 knockdown (using a DUOXA1 shRNA construct) resulted in enhanced differentiation compared to cells subjected to a control shRNA, and subjecting DUOXA1 overexpressing cells to siRNAs targeting DUOX1 or apoptosis signal-regulating kinase 1 (ASK1) rescued the phenotype. Conclusions: This study represents the first to demonstrate the importance of DUOXA1 in skeletal muscle myoblasts and that DUOXA1 overexpression in muscle stem cells induces apoptosis and inhibits differentiation through DUOX1 and ASK1. Β© 2014 Sandiford et al.; licensee BioMed Central Ltd
Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative Ξ²-catenin
<p>Abstract</p> <p>Background</p> <p>Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation.</p> <p>Results</p> <p>Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a Ξ²-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative Ξ²-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4.</p> <p>Conclusion</p> <p>RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating Ξ²-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.</p
Effectiveness of moving on: an Australian designed generic self-management program for people with a chronic illness
Background: This paper presents the evaluation of βMoving Onβ, a generic self-management program for people with a chronic illness developed by Arthritis NSW. The program aims to help participants identify their need for behavior change and acquire the knowledge and skills to implement changes that promote their health and quality of life.
Method: A prospective pragmatic randomised controlled trial involving two group programs in community settings: the intervention program (Moving On) and a control program (light physical activity). Participants were recruited by primary health care providers across the north-west region of metropolitan Sydney, Australia between June 2009 and October 2010. Patient outcomes were self-reported via pre- and post-program surveys completed at the time of enrolment and sixteen weeks after program commencement. Primary outcomes were change in self-efficacy (Self-efficacy for Managing Chronic Disease 6-Item Scale), self-management knowledge and behaviour and perceived health status (Self-Rated Health Scale and the Health Distress Scale).
Results: A total of 388 patient referrals were received, of whom 250 (64.4%) enrolled in the study. Three patients withdrew prior to allocation. 25 block randomisations were performed by a statistician external to the research team: 123 patients were allocated to the intervention program and 124 were allocated to the control program. 97 (78.9%) of the intervention participants commenced their program. The overall attrition rate of 40.5% included withdrawals from the study and both programs. 24.4% of participants withdrew from the intervention program but not the study and 22.6% withdrew from the control program but not the study. A total of 62 patients completed the intervention program and follow-up evaluation survey and 77 patients completed the control program and follow- up evaluation survey.
At 16 weeks follow-up there was no significant difference between intervention and control groups in self-efficacy; however, there was an increase in self-efficacy from baseline to follow-up for the intervention participants (t=β1.948, p=0.028). There were no significant differences in self-rated health or health distress scores between groups at follow-up, with both groups reporting a significant decrease in health distress scores. There was no significant difference between or within groups in self-management knowledge and stage of change of behaviours at follow-up. Intervention group attenders had significantly higher physical activity (t=β4.053, p=0.000) and nutrition scores (t=2.315, p= 0.01) at follow-up; however, these did not remain significant after adjustment for covariates.
At follow-up, significantly more participants in the control group (20.8%) indicated that they did not have a self-management plan compared to those in the intervention group (8.8%) (X2=4.671, p=0.031). There were no significant changes in other self-management knowledge areas and behaviours after adjusting for covariates at follow-up.
Conclusions: The study produced mixed findings. Differences between groups as allocated were diluted by the high proportion of patients not completing the program. Further monitoring and evaluation are needed of the impact and cost effectiveness of the program.
Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN1260900029821
Aberrant crossed corticospinal facilitation in muscles distant from a spinal cord injury.
Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI
Alcohol consumption and sport: a cross-sectional study of alcohol management practices associated with at-risk alcohol consumption at community football clubs
BackgroundExcessive alcohol consumption is responsible for considerable harm from chronic disease and injury. Within most developed countries, members of sporting clubs participate in at-risk alcohol consumption at levels above that of communities generally. There has been limited research investigating the predictors of at-risk alcohol consumption in sporting settings, particularly at the non-elite level. The purpose of this study was to examine the association between the alcohol management practices and characteristics of community football clubs and at-risk alcohol consumption by club members.MethodsA cross sectional survey of community football club management representatives and members was conducted. Logistic regression analysis (adjusting for clustering by club) was used to determine the association between the alcohol management practices (including alcohol management policy, alcohol-related sponsorship, availability of low- and non-alcoholic drinks, and alcohol-related promotions, awards and prizes) and characteristics (football code, size and location) of sporting clubs and at-risk alcohol consumption by club members.ResultsMembers of clubs that served alcohol to intoxicated people [OR: 2.23 (95% CI: 1.26-3.93)], conducted ‘happy hour’ promotions [OR: 2.84 (95% CI: 1.84-4.38)] or provided alcohol-only awards and prizes [OR: 1.80 (95% CI: 1.16-2.80)] were at significantly greater odds of consuming alcohol at risky levels than members of clubs that did not have such alcohol management practices. At-risk alcohol consumption was also more likely among members of clubs with less than 150 players compared with larger clubs [OR:1.45 (95% CI: 1.02-2.05)] and amongst members of particular football codes.ConclusionsThe findings of this study suggest a need and opportunity for the implementation of alcohol harm reduction strategies targeting specific alcohol management practices at community football clubs.<br /
Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation
Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci.
Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard.
Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host
Recommended from our members
Connectivity-based parcellation of the human frontal polar cortex
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity
A Multicenter Randomized Clinical Trial Evaluating Interleukin-2 Activated Hematopoietic Stem Cell Transplantation and Post-transplant IL-2 for High Risk Breast Cancer Patients
This Phase III randomized multicenter trial compared progression-free (PFS) and overall survival (OS) for autologous peripheral blood stem cell (aPBSC) transplantation with or without immunotherapy in high-risk breast cancer patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44232/1/10549_2005_Article_4445.pd
What Is New for an Old Molecule? Systematic Review and Recommendations on the Use of Resveratrol
Stilbenes are naturally occurring phytoalexins that generally exist as their more stable E isomers. The most well known natural stilbene is resveratrol (Res), firstly isolated in 1939 from roots of Veratrum grandiflorum (white hellebore) (1) and since then found in various edible plants, notably in Vitis vinifera L. (Vitaceae) (2). The therapeutic potential of Res covers a wide range of diseases, and multiple beneficial effects on human health such as antioxidant, anti-inflammatory and anti-cancer activities have been suggested based on several in vitro and animal studies (3). In particular, Res has been reported to be an inhibitor of carcinogenesis at multiple stages via its ability to inhibit cyclooxygenase, and is an anticancer agent with a role in antiangiogenesis (4). Moreover, both in vitro and in vivo studies showed that Res induces cell cycle arrest and apoptosis in tumor cells (4). However, clinical studies in humans evidenced that Res is rapidly absorbed after oral intake, and that the low level observed in the blood stream is caused by a fast conversion into metabolites that are readily excreted from the body (5). Thus, considerable efforts have gone in the design and synthesis of Res analogues with enhanced metabolic stability. Considering that reduced Res (dihydro- resveratrol, D-Res) conjugates may account for as much as 50% of an oral Res dose (5), and that D-Res has a strong proliferative effect on hormone-sensitive cancer cell lines such as breast cancer cell line MCF7 (6), we recently devoted our synthetic efforts to the preparation of trans-restricted analogues of Res in which the E carbon-carbon double bond is embedded into an imidazole nucleus. To keep the trans geometry, the two aryl rings were linked to the heteroaromatic core in a 1,3 fashion. Based on this design, we successfully prepared a variety of 1,4-, 2,4- and 2,5-diaryl substituted imidazoles including Res analogues 1, 2 and 3, respectively, by procedures that involve transition metal-catalyzed Suzuki-Miyaura cross-coupling reactions and highly selective N-H or C-H direct arylation reactions as key synthetic steps.
The anticancer activity of compounds 1β3 was evaluated against the 60 human cancer cell lines panel of the National Cancer Institute (NCI, USA). The obtained results, that will be showed and discussed along with the protocols developed for the preparation of imidazoles 1β3, confirmed that a structural optimization of Res may provide analogues with improved potency in inhibiting the growth of human cancer cell lines in vitro when compared to their natural lead.
(1) Takaoka,M.J.Chem.Soc.Jpn.1939,60,1090-1100.
(2) Langcake, P.; Pryce, R. J. Physiological. Plant Patology 1976, 9, 77-86.
(3) Vang, O.; et al. PLoS ONE 2011, 6, e19881. doi:10.1371/journal.pone.0019881
(4) Kraft, T. E.; et al. Critical Reviews in Food Science and Nutrition 2009, 49, 782-799.
(5) Walle, T. Ann. N.Y. Acad. Sci. 2011, 1215, 9-15. doi: 10.1111/j.1749-6632.2010.05842.x
(6) Gakh,A.A.;etal.Bioorg.Med.Chem.Lett.2010,20,6149-6151
- β¦