2,544 research outputs found

    Warm exo-Zodi from cool exo-Kuiper belts: The significance of P-R drag and the inference of intervening planets

    Get PDF
    Poynting-Robertson drag has been considered an ineffective mechanism for delivering dust to regions interior to the cool Kuiper belt analogues seen around other Sun-like stars. This conclusion is however based on the very large contrast in dust optical depth between the parent belt and the interior regions that results from the dominance of collisions over drag in systems with detectable cool belts. Here, we show that the levels of habitable zone dust arising from detectable Kuiper belt analogues can be tens to a few hundreds of times greater than the optical depth in the Solar Zodiacal cloud. Dust enhancements of more than a few tens of ‘zodi’ are expected to hinder future Earthimaging missions, but relatively few undetectable Kuiper belts result in such levels, particularly around stars older than a few Gyr. Thus, current mid to far-IR photometric surveys have already identified most of the 20-25% of nearby stars where P-R drag from outer belts could seriously impact Earth-imaging. The LBTI should easily detect such warm dust around many nearby stars with outer belts, and will provide insight into currently unclear details of the competition between P-R drag and collisions. Given sufficient confidence in future models, the inevitability of P-R drag means that the nondetection of warm dust where detectable levels were expected could be used to infer additional dust removal process, the most likely being the presence of intervening planets.We thank Rik van Lieshout and Mark Wyatt for useful discussions, Bertrand Mennesson for sharing the KIN results ahead of publication, the reviewer for thoughtful and constructive comments, and the LBTI Science and Instrument teams for providing some of the motivation for this work. GMK is supported by the European Union through ERC grant number 279973, and AP gratefully acknowledges support from an Undergraduate Research Bursary from the Royal Astronomical Society.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/449/3/2304.abstract

    Five steps in the evolution from protoplanetary to debris disk

    Get PDF
    The protoplanetary disks of Herbig Ae stars eventually dissipate leaving a tenuous debris disk comprised of planetesimals and dust, as well as possibly gas and planets. This paper uses the properties of 10-20Myr A star debris disks to consider the protoplanetary to debris disk transition. The physical distinction between these two classes is argued to rest on the presence of primordial gas in sufficient quantities to dominate the motion of small dust grains (not the secondary nature of the dust or its level of stirring). This motivates an observational classification based on the dust spectrum, empirically defined so that A star debris disks require fractional excesses <3 at 12um and <2000 at 70um. We also propose a hypothesis to test, that the main sequence planet/planetesimal structures are already in place (but obscured) during the protoplanetary disk phase. This may be only weakly true if planetary architectures change until frozen during disk dispersal, or completely false if planets and planetesimals form during disk dispersal. Five steps in the transition are discussed: (i) carving an inner hole to form a transition disk; (ii) depletion of mm-sized dust in outer disk, noting the importance of determining whether this mass ends up in planetesimals or is collisionally depleted; (iii) final clearing of inner regions, noting that many mechanisms replenish moderate hot dust levels at later phases, and likely also operate in protoplanetary disks; (iv) disappearence of gas, noting recent discoveries of primordial and secondary gas in debris disks that highlight our ignorance and its impending enlightenment by ALMA; (v) formation of ring-like planetesimal structures, noting these are shaped by interactions with planets, and that the location of planetesimals in protoplanetary disks may be unrelated to the dust concentrations therein that are set by gas interactions.The authors are grateful for support from the European Union through ERC grant number 279973.This is the author accepted manuscript. The final version is available via Springer at http://link.springer.com/article/10.1007/s10509-015-2315-6/fulltext.html

    Shaping HR8799's outer dust belt with an unseen planet

    Get PDF
    HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet, interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semi-major axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semi-major axis of 0.1MJ\mathrm{M_J} and 138au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only \sim1\% of the mass loss rate of the inner disk can be replenished by inward scattering. However we find that the higher rate of inward scattering during the first \sim10Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at 10\sim10Myr ages.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    An Empirical Planetesimal Belt Radius-Stellar Luminosity Relation

    Get PDF
    Resolved observations of millimetre-sized dust, tracing larger planetesimals, have pinpointed the location of 26 Edgeworth-Kuiper belt analogs. We report that a belt's distance RR to its host star correlates with the star's luminosity LL_{\star}, following RL0.19R\propto L^{0.19}_{\star} with a low intrinsic scatter of \sim17%. Remarkably, our Edgeworth-Kuiper belt in the Solar System and the two CO snow lines imaged in protoplanetary disks lie close to this RR-LL_{\star} relation, suggestive of an intrinsic relationship between protoplanetary disk structures and belt locations. To test the effect of bias on the relation, we use a Monte Carlo approach and simulate uncorrelated model populations of belts. We find that observational bias could produce the slope and intercept of the RR-LL_{\star} relation, but is unable to reproduce its low scatter. We then repeat the simulation taking into account the collisional evolution of belts, following the steady state model that fits the belt population as observed through infrared excesses. This significantly improves the fit by lowering the scatter of the simulated RR-LL_{\star} relation; however, this scatter remains only marginally consistent with the one observed. The inability of observational bias and collisional evolution alone to reproduce the tight relationship between belt radius and stellar luminosity could indicate that planetesimal belts form at preferential locations within protoplanetary disks. The similar trend for CO snow line locations would then indicate that the formation of planetesimals and/or planets in the outer regions of planetary systems is linked to the volatility of their building blocks, as postulated by planet formation models

    ALMA observations of the narrow HR 4796A debris ring

    Get PDF
    The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system’s Edgeworth–Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3–2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring’s eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored

    Analysis of the Herschel DEBRIS Sun-like star sample

    Get PDF
    This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ∼90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission from a debris disc was detected around 47 stars, giving a detection rate of 17.1 +2.6−2.3  per cent, with lower rates for later spectral types. For each target a blackbody spectrum was fitted to the dust emission to determine its fractional luminosity and temperature. The derived underlying distribution of fractional luminosity versus blackbody radius in the population showed that most detected discs are concentrated at f ∼ 10−5 and at temperatures corresponding to blackbody radii 7–40 au, which scales to ∼40 au for realistic dust properties (similar to the current Kuiper belt). Two outlying populations are also evident; five stars have exceptionally bright emission ( f > 5 × 10−5), and one has unusually hot dust <4 au. The excess emission distributions at all wavelengths were fitted with a steady-state evolution model, showing that these are compatible with all stars being born with a narrow belt that then undergoes collisional grinding. However, the model cannot explain the hot dust systems – likely originating in transient events – and bright emission systems – arising potentially from atypically massive discs or recent stirring. The emission from the present-day Kuiper belt is predicted to be close to the median of the population, suggesting that half of stars have either depleted their Kuiper belts (similar to the Solar system) or had a lower planetesimal formation efficiency.This work was supported by the European Union through European Research Council grant number 279973 (MCW, GMK). GMK was also supported by the Royal Society as a Royal Society University Research Fellow

    Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals

    Get PDF
    This paper uses observations of dusty debris discs, including a growing number of gas detections in these systems, to test our understanding of the origin and evolution of this gaseous component. It is assumed that all debris discs with icy planetesimals create second generation CO, C and O gas at some level, and the aim of this paper is to predict that level and assess its observability. We present a new semi-analytical equivalent of the numerical model of Kral et al. allowing application to large numbers of systems. That model assumes CO is produced from volatile-rich solid bodies at a rate that can be predicted from the debris discs fractional luminosity. CO photodissociates rapidly into C and O that then evolve by viscous spreading. This model provides a good qualitative explanation of all current observations, with a few exceptional systems that likely have primordial gas. The radial location of the debris and stellar luminosity explain some non-detections, e.g. close-in debris (like HD 172555) is too warm to retain CO, while high stellar luminosities (like η Tel) result in short CO lifetimes. We list the most promising targets for gas detections, predicting >15 CO detections and >30 C i detections with ALMA, and tens of C ii and O i detections with future far-IR missions. We find that CO, C i, C ii and O i gas should be modelled in non-LTE for most stars, and that CO, C i and O i lines will be optically thick for the most gas-rich systems. Finally, we find that radiation pressure, which can blow out C i around early-type stars, can be suppressed by self-shielding.QK, LM and MCW acknowledge support from the European Union through ERC grant number 279973. QK and MCW acknowledge funding from STFC via the Institute of Astronomy, Cambridge Consolidated Grant. GMK is supported by the Royal Society as a Royal Society University Research Fellow. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    Unlocking the secrets of the midplane gas and dust distribution in the young hybrid disc HD 141569

    Get PDF
    Context. HD 141569 is a pre-main sequence star with a disc uniquely placed between protoplanetary and debris discs, similar to the older "hybrid" type discs. Aims: This work aims to place the mass and spatial structure of the disc midplane in the context of the debris, hybrid and protoplanetary discs. Methods: We observed HD 141569 with ALMA in 1.3 mm continuum and 13CO (2-1). This is the first detection and image of the optically thin gas emission from the midplane of this disc. Results: In continuum emission, we detect a combination of an unresolved central peak and a ring of millimetre emission at 220 ± 10 au, slightly interior to one of the rings discovered in scattered light. The minimum dust mass of the ring is 0.13 ± 0.02 M⊕ while the unresolved millimetre peak at the stellar location is predominantly thermal emission due to a minimum of 1.2 ± 0.2 M⊕ of dust. 13CO is distributed asymmetrically around the stellar position with a peak at 1ʺ&dotbelow;1 distance and a PA of -33°. The gas is detected as far as 220 ± 10 au, a radial separation the same as that of the mm ring. Assuming optically thin emission and standard ISM abundances, we used our 13CO data to derive the gas mass in the disc of (6.0 ± 0.9) × 10-4M⊙. Comparison to published 12CO data shows that 12CO is optically thick, explaining why estimates based on 12CO underestimated the gas mass
    corecore