192 research outputs found

    Influence of fibers on the dust dislodgement efficiency of bag filters

    Get PDF
    In recent years non-woven bag filters have been used in waste incinerators for the efficient collection of dust and removal of detrimental gas. However, dust collection efficiency decreases with time until the bag filters are no longer effective. Dust adhering to the fabric is a major determinant of bag filter life. In the present study a flat filter was used to study the relationship between various parameters of a bag filter structure and its dust dislodgement efficiency. The results confirm that fiber linear density, modulus of elasticity, and the form of the fiber cross-section of the felt can each affect the dust collection efficiency of a bag filter. Higher fiber linear density in a bag filter prevents dust from penetrating the filter, and this allows the dust to be more easily dislodged from the filter. Examination of various forms of fiber cross-section indicates that for the same fiber linear density the triangular form is better than the circular form. A lower Young's modulus allows the fiber to bend more easily and prevents the dust from penetrating the filter. Fiber linear density, fiber modulus of elasticity and form of the fiber cross-section are the variables affecting bag filter efficiency.ArticleTEXTILE RESEARCH JOURNAL. 84(7):764-771 (2014)journal articl

    New Maximum Likelihood Estimators for Eukaryotic Intron Evolution

    Get PDF
    The evolution of spliceosomal introns remains poorly understood. Although many approaches have been used to infer intron evolution from the patterns of intron position conservation, the results to date have been contradictory. In this paper, we address the problem using a novel maximum likelihood method, which allows estimation of the frequency of intron insertion target sites, together with the rates of intron gain and loss. We analyzed the pattern of 10,044 introns (7,221 intron positions) in the conserved regions of 684 sets of orthologs from seven eukaryotes. We determined that there is an average of one target site per 11.86 base pairs (bp) (95% confidence interval, 9.27 to 14.39 bp). In addition, our results showed that: (i) overall intron gains are ~25% greater than intron losses, although specific patterns vary with time and lineage; (ii) parallel gains account for ~18.5% of shared intron positions; and (iii) reacquisition following loss accounts for ~0.5% of all intron positions. Our results should assist in resolving the long-standing problem of inferring the evolution of spliceosomal introns

    Advanced homology computation of digital volumes via cell complexes

    Get PDF
    Given a 3D binary voxel-based digital object V, an algorithm for computing homological information for V via a polyhedral cell complex is designed. By homological information we understand not only Betti numbers, representative cycles of homology classes and homological classification of cycles but also the computation of homology numbers related additional algebraic structures defined on homology (coproduct in homology, product in cohomology, (co)homology operations,...). The algorithm is mainly based on the following facts: a) a local 3D-polyhedrization of any 2×2×2 configuration of mutually 26-adjacent black voxels providing a coherent cell complex at global level; b) a description of the homology of a digital volume as an algebraic-gradient vector field on the cell complex (see Discrete Morse Theory [5], AT-model method [7,5]). Saving this vector field, we go further obtaining homological information at no extra time processing cost

    Experimental analysis of self-organized structure and transport on the magnetospheric plasma device RT-1

    Get PDF
    Dipole plasma exhibits strong heterogeneities in field strength, density, temperature and other parameters, while maintaining a holistic balance. Our study of the internal structures reveals the fundamental self-organizing mechanisms operating in their simplest realization (as commonly observed in astronomical systems). Three new findings are reported from the RT-1 experiment. The creation of a high-energy electron core (similar to the radiation belts in planetary magnetospheres) is observed for the first time in a laboratory system. High-energy electrons (3–15 keV), produced by electron cyclotron heating, accumulate in a \u27belt\u27 located in the low-density region (high-beta value ~1 is obtained by increasing the high-energy component up to 70% of the total electrons). The dynamical process of the \u27up-hill diffusion\u27 (a spontaneous mechanism of creating density gradient) has been analyzed by perturbing the density by gas injection. The spontaneous density formation in the laboratory magnetosphere elucidates the self-organized plasma transport relevant to a planetary magnetosphere. The coherence-imaging spectroscopy visualized the two-dimensional profiles of ion temperature and flow velocity in the ion cyclotron resonance frequency heating. The ion temperature and flow were enhanced globally, and particularly along the magnetic field lines near the levitation magnet. These results advance our understanding of transport and self-organization not only in dipole plasmas, but in general magnetic confinement systems relevant to fusion plasmas

    Nd:YAG laser Thomson scattering diagnostics for a laboratory magnetosphere

    Get PDF
    A new Nd:YAG laser Thomson scattering (TS) system has been developed to explore the mechanism of high-beta plasma formation in the RT-1 device. The TS system is designed to measure electron temperatures (Te) from 10 eV to 50 keV and electron densities (ne) of more than 1.0 × 1017 m−3. To measure at the low-density limit, the receiving optics views the long scattering length (60 mm) using a bright optical system with both a large collection window (260-mm diameter) and large collection lenses (300-mm diameter, a solid angle of ∼68 × 10−3 str). The scattered light of the 1.2-J Nd:YAG laser (repetition frequency: 10 Hz) is detected with a scattering angle of 90° and is transferred via a set of lenses and an optical fiber bundle to a polychromator. After Raman scattering measurement for the optical alignment and an absolute calibration, we successfully measured Te = 72.2 eV and ne = 0.43 × 1016 m−3 for the coil-supported case and Te = 79.2 eV and ne = 1.28 × 1016 m−3 for the coil-levitated case near the inner edge in the magnetospheric plasmas

    Ion cyclotron resonance heating system in the RT-1 magnetospheric plasma

    Get PDF
    We have developed an ion cyclotron resonance frequency (ICRF) heating system for the Ring Trap 1 (RT-1) magnetospheric device. We excite slow waves from the polar region of the dipole magnetic field. The target helium plasma is produced by electron cyclotron heating. The electrons comprise high-temperature (>10 keV) and low-temperature (<100 eV) components with both typically exhibiting densities of the same order of magnitude. The ICRF heating causes an increase in the ion temperatures and toroidal flow velocities in the core plasma region. We observe appreciable temperature differences between the different ion species (main He+ and impurity C2+), suggesting a strong influence of the charge-exchange loss, which caused the bulk ions to remain relatively cold (~20 eV) compared to the impurity ions (~40 eV). By developing an electro-optical measurement system, we have measured the local wave electric field in the plasma

    Loss of Ribosomal Protein L11 Affects Zebrafish Embryonic Development through a p53-Dependent Apoptotic Response

    Get PDF
    Ribosome is responsible for protein synthesis in all organisms and ribosomal proteins (RPs) play important roles in the formation of a functional ribosome. L11 was recently shown to regulate p53 activity through a direct binding with MDM2 and abrogating the MDM2-induced p53 degradation in response to ribosomal stress. However, the studies were performed in cell lines and the significance of this tumor suppressor function of L11 has yet to be explored in animal models. To investigate the effects of the deletion of L11 and its physiological relevance to p53 activity, we knocked down the rpl11 gene in zebrafish and analyzed the p53 response. Contrary to the cell line-based results, our data indicate that an L11 deficiency in a model organism activates the p53 pathway. The L11-deficient embryos (morphants) displayed developmental abnormalities primarily in the brain, leading to embryonic lethality within 6–7 days post fertilization. Extensive apoptosis was observed in the head region of the morphants, thus correlating the morphological defects with apparent cell death. A decrease in total abundance of genes involved in neural patterning of the brain was observed in the morphants, suggesting a reduction in neural progenitor cells. Upregulation of the genes involved in the p53 pathway were observed in the morphants. Simultaneous knockdown of the p53 gene rescued the developmental defects and apoptosis in the morphants. These results suggest that ribosomal dysfunction due to the loss of L11 activates a p53-dependent checkpoint response to prevent improper embryonic development
    corecore