9 research outputs found

    Management and Outcomes of Cardiogenic Shock in Cardiac ICUs With Versus Without Shock Teams.

    No full text
    BACKGROUND: Single-center studies suggest that implementation of multidisciplinary cardiogenic shock (CS) teams is associated with improved CS survival. OBJECTIVES: The aim was to characterize practice patterns and outcomes in the management of CS across multiple centers with versus without shock teams. METHODS: The Critical Care Cardiology Trials Network is a multicenter network of cardiac intensive care units (CICUs) in North America. All consecutive medical admissions to each CICU (n = 24) were captured during annual 2-month collection periods (2017-2019; n = 6,872). Shock management and CICU mortality among centers with versus without shock teams were compared using inverse probability weighting. RESULTS: Ten of the 24 centers had shock teams. Among 1,242 CS admissions, 44% were at shock team centers. The groups were well-balanced with respect to demographics, shock etiology, Sequential Organ Failure Assessment score, biochemical markers of end organ dysfunction, and invasive hemodynamics. Centers with shock teams used more pulmonary artery catheters (60% vs 49%; adjusted odds ratio [OR]: 1.86; 95% CI: 1.47-2.35; P \u3c 0.001), less overall mechanical circulatory support (MCS) (35% vs 43%; adjusted OR: 0.74; 95% CI: 0.59-0.95; P = 0.016), and more advanced types of MCS (53% vs 43% of all MCS; adjusted OR: 1.73; 95% CI: 1.19-2.51; P = 0.005) rather than intra-aortic balloon pumps. The presence of a shock team was independently associated with lower CICU mortality (23% vs 29%; adjusted OR: 0.72; 95% CI: 0.55-0.94; P = 0.016). CONCLUSIONS: In this multicenter observational study, centers with shock teams were more likely to obtain invasive hemodynamics, use advanced types of MCS, and have lower risk-adjusted mortality. A standardized multidisciplinary shock team approach may improve outcomes in CS

    Prognostic Significance of Haemodynamic Parameters in Patients With Cardiogenic Shock

    No full text
    AIMS: Invasive haemodynamic assessment with a pulmonary artery catheter is often used to guide the management of patients with cardiogenic shock (CS) and may provide important prognostic information. We aimed to assess prognostic associations and relationships to end-organ dysfunction of presenting haemodynamic parameters in CS. METHODS AND RESULTS: The Critical Care Cardiology Trials Network is an investigator-initiated multicenter registry of cardiac intensive care units (CICUs) in North America coordinated by the TIMI Study Group. Patients with CS (2018-2022) who underwent invasive haemodynamic assessment within 24 h of CICU admission were included. Associations of haemodynamic parameters with in-hospital mortality were assessed using logistic regression, and associations with presenting serum lactate were assessed using least squares means regression. Sensitivity analyses were performed excluding patients on temporary mechanical circulatory support and adjusted for vasoactive-inotropic score. Among the 3603 admissions with CS, 1473 had haemodynamic data collected within 24 h of CICU admission. The median cardiac index was 1.9 (25th-75th percentile, 1.6-2.4) L/min/m2 and mean arterial pressure (MAP) was 74 (66-86) mmHg. Parameters associated with mortality included low MAP, low systolic blood pressure, low systemic vascular resistance, elevated right atrial pressure (RAP), elevated RAP/pulmonary capillary wedge pressure ratio, and low pulmonary artery pulsatility index. These associations were generally consistent when controlling for the intensity of background pharmacologic and mechanical haemodynamic support. These parameters were also associated with higher presenting serum lactate. CONCLUSION: In a contemporary CS population, presenting haemodynamic parameters reflecting decreased systemic arterial tone and right ventricular dysfunction are associated with adverse outcomes and systemic hypoperfusion

    Critical Care Cardiology Trials Network (CCCTN): A Cohort Profile

    No full text
    AIMS: The aims of the Critical Care Cardiology Trials Network (CCCTN) are to develop a registry to investigate the epidemiology of cardiac critical illness and to establish a multicentre research network to conduct randomised clinical trials (RCTs) in patients with cardiac critical illness. METHODS AND RESULTS: The CCCTN was founded in 2017 with 16 centres and has grown to a research network of over 40 academic and clinical centres in the United States and Canada. Each centre enters data for consecutive cardiac intensive care unit (CICU) admissions for at least 2 months of each calendar year. More than 20 000 unique CICU admissions are now included in the CCCTN Registry. To date, scientific observations from the CCCTN Registry include description of variations in care, the epidemiology and outcomes of all CICU patients, as well as subsets of patients with specific disease states, such as shock, heart failure, renal dysfunction, and respiratory failure. The CCCTN has also characterised utilization patterns, including use of mechanical circulatory support in response to changes in the heart transplantation allocation system, and the use and impact of multidisciplinary shock teams. Over years of multicentre collaboration, the CCCTN has established a robust research network to facilitate multicentre registry-based randomised trials in patients with cardiac critical illness. CONCLUSION: The CCCTN is a large, prospective registry dedicated to describing processes-of-care and expanding clinical knowledge in cardiac critical illness. The CCCTN will serve as an investigational platform from which to conduct randomised controlled trials in this important patient population

    Prognostic Significance of Hemodynamic Parameters in Patients with Cardiogenic Shock.

    No full text
    BACKGROUND: Invasive hemodynamic assessment with a pulmonary artery catheter is often used to guide management of patients with cardiogenic shock (CS) and may provide important prognostic information. We aimed to assess prognostic associations and relationships to end-organ dysfunction of presenting hemodynamic parameters in CS. METHODS: The Critical Care Cardiology Trials Network (CCCTN) is an investigator-initiated multicenter registry of cardiac intensive care units (CICUs) in North America coordinated by the TIMI Study Group. Patients with CS (2018-2022) who underwent invasive hemodynamic assessment within 24 hours of CICU admission were included. Associations of hemodynamic parameters with in-hospital mortality were assessed using logistic regression, and associations with presenting serum lactate were assessed using least squares means regression. Sensitivity analyses were performed excluding patients on temporary mechanical circulatory support and adjusted for vasoactive-inotropic score. RESULTS: Among the 3,603 admissions with CS, 1,473 had hemodynamic data collected within 24 hours of CICU admission. Median cardiac index was 1.9 (IQR, 1.6-2.4) L/min/m2 and mean arterial pressure (MAP) was 74 (66-86) mmHg. Parameters associated with mortality included low MAP, low systolic blood pressure, low systemic vascular resistance, elevated right atrial pressure (RAP), elevated RAP/pulmonary capillary wedge pressure ratio, and low pulmonary artery pulsatility index. These associations were generally consistent when controlling for intensity of background pharmacologic and mechanical hemodynamic support. These parameters were also associated with higher presenting serum lactate. CONCLUSIONS: In a contemporary CS population, presenting hemodynamic parameters reflecting decreased systemic arterial tone and indicators of right ventricular dysfunction are associated with adverse outcomes and presenting lactate

    Pulmonary Artery Catheter Use and Mortality in the Cardiac Intensive Care Unit.

    No full text
    BACKGROUND: The appropriate use of pulmonary artery catheters (PACs) in critically ill cardiac patients remains debated. OBJECTIVES: The authors aimed to characterize the current use of PACs in cardiac intensive care units (CICUs) with attention to patient-level and institutional factors influencing their application and explore the association with in-hospital mortality. METHODS: The Critical Care Cardiology Trials Network is a multicenter network of CICUs in North America. Between 2017 and 2021, participating centers contributed annual 2-month snapshots of consecutive CICU admissions. Admission diagnoses, clinical and demographic data, use of PACs, and in-hospital mortality were captured. RESULTS: Among 13,618 admissions at 34 sites, 3,827 were diagnosed with shock, with 2,583 of cardiogenic etiology. The use of mechanical circulatory support and heart failure were the patient-level factors most strongly associated with a greater likelihood of the use of a PAC (OR: 5.99 [95% CI: 5.15-6.98]; P \u3c 0.001 and OR: 3.33 [95% CI: 2.91-3.81]; P \u3c 0.001, respectively). The proportion of shock admissions with a PAC varied significantly by study center ranging from 8% to 73%. In analyses adjusted for factors associated with their placement, PAC use was associated with lower mortality in all shock patients admitted to a CICU (OR: 0.79 [95% CI: 0.66-0.96]; P = 0.017). CONCLUSIONS: There is wide variation in the use of PACs that is not fully explained by patient level-factors and appears driven in part by institutional tendency. PAC use was associated with higher survival in cardiac patients with shock presenting to CICUs. Randomized trials are needed to guide the appropriate use of PACs in cardiac critical care

    Clinical Practice Patterns in Temporary Mechanical Circulatory Support for Shock in the Critical Care Cardiology Trials Network (CCCTN) Registry.

    No full text
    BACKGROUND: Temporary mechanical circulatory support (MCS) devices provide hemodynamic assistance for shock refractory to pharmacological treatment. Most registries have focused on single devices or specific etiologies of shock, limiting data regarding overall practice patterns with temporary MCS in cardiac intensive care units. METHODS: The CCCTN (Critical Care Cardiology Trials Network) is a multicenter network of tertiary CICUs in North America. Between September 2017 and September 2018, each center (n=16) contributed a 2-month snapshot of consecutive medical CICU admissions. RESULTS: Of the 270 admissions using temporary MCS, 33% had acute myocardial infarction-related cardiogenic shock (CS), 31% had CS not related to acute myocardial infarction, 11% had mixed shock, and 22% had an indication other than shock. Among all 585 admissions with CS or mixed shock, 34% used temporary MCS during the CICU stay with substantial variation between centers (range: 17%-50%). The most common temporary MCS devices were intraaortic balloon pumps (72%), Impella (17%), and veno-arterial extracorporeal membrane oxygenation (11%), although intraaortic balloon pump use also varied between centers (range: 40%-100%). Patients managed with intraaortic balloon pump versus other forms of MCS (advanced MCS) had lower Sequential Organ Failure Assessment scores and less severe metabolic derangements. Illness severity was similar at high- versus low-MCS utilizing centers and at centers with more advanced MCS use. CONCLUSIONS: There is wide variation in the use of temporary MCS among patients with shock in tertiary CICUs. While hospital-level variation in temporary MCS device selection is not explained by differences in illness severity, patient-level variation appears to be related, at least in part, to illness severity

    Evidence of selection for an accessible nucleosomal array in human

    Get PDF
    Background: Recently, a physical model of nucleosome formation based on sequence-dependent bending properties of the DNA double-helix has been used to reveal some enrichment of nucleosome-inhibiting energy barriers (NIEBs) nearby ubiquitous human " master " replication origins. Here we use this model to predict the existence of about 1.6 millions NIEBs over the 22 human autosomes. Results: We show that these high energy barriers of mean size 153 bp correspond to nucleosome-depleted regions (NDRs) in vitro, as expected, but also in vivo. On either side of these NIEBs, we observe, in vivo and in vitro, a similar compacted nucleosome ordering, suggesting an absence of chromatin remodeling. This nucleosomal ordering strongly correlates with oscillations of the GC content as well as with the interspecies and intraspecies mutation profiles along these regions. Comparison of these divergence rates reveals the existence of both positive and negative selections linked to nucleosome positioning around these intrinsic NDRs. Overall, these NIEBs and neighboring nucleosomes cover 37.5 % of the human genome where nucleosome occupancy is stably encoded in the DNA sequence. These 1 kb-sized regions of intrinsic nucleosome positioning are equally found in GC-rich and GC-poor isochores, in early and late replicating regions, in intergenic and genic regions but not at gene promoters. Conclusion: The source of selection pressure on the NIEBs has yet to be resolved in future work. One possible scenario is that these widely distributed chromatin patterns have been selected in human to impair the condensation of the nucleosomal array into the 30 nm chromatin fiber, so as to facilitate the epigenetic regulation of nuclear functions in a cell-type-specific manner

    Surgery of the Airway, Thorax, and Diaphragm: Residual Problems and Complications

    No full text
    corecore