79 research outputs found

    Anisotropic optical response of InP self-assembled quantum dots studied by pump-probe spectroscopy

    Get PDF
    Transient anisotropic reflectivity change spectra of InP quantum dots have been observed by means of two-color pump-probe spectroscopy. The results show a fast decay component with a lifetime of 100–200 ps which depends on the probe energy, followed by the slow decay component of ~1 ns. The reflectivity change spectra have a dispersive shape having a maximum on the higher energy side of the photoluminescence (PL) band by 80 meV, and a dip located at the maximum of the PL band. Interestingly, the reflectivity change signals observed for the [1[overline 1]0] and [110] polarizations have the opposite sign when the probe energy is set between the first and second exciton states. The temporal change of spectra is simulated by means of a Monte Carlo method, and the model is found to well reproduce the experimental result. Further, the model enables us to evaluate the microscopic exciton parameters of single quantum dots by macroscopic observations. The oscillator strengths along the [110] and [1[overline 1]0] directions at the PL peak energy are evaluated to be fx=0.37 and fy=0.71, respectively. The oscillator strength is about five times smaller than simple theoretical estimates. This suggests a small overlap of the envelope functions which is consistent with the existence of a permanent dipole moment observed in these QDs

    Co-infection of SARS-CoV-2 and influenza virus causes more severe and prolonged pneumonia in hamsters

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases

    F-molding: A New Production Method for Largely Aspherical Mirrors of Cordierite

    Get PDF
    Cordierite is a rigid low thermal expansion coefficient ceramic equivalent to that of low thermal expansion glass but with voids due to forming with raw material powder. To overcome this problem, we propose Flexible Molding (F-molding) as our new fabrication method. With F-molding, the raw material powder is converted to liquid slurry, which is poured into a resin mold, solidified, and directly formed into near net design of a mirror. The mold prepared from F-molding is an effective tool for processing multiple volumes of identical structures such as those used in segmented mirror designs. We introduce details of our fabrication method in F-molding mirror and report its measurement results of optical performances with a 270mm diameter sample

    Epitaxially regrown quantum dot photonic crystal surface emitting lasers

    Get PDF
    Quantum dot-based epitaxially regrown photonic crystal surface emitting lasers are demonstrated at room temperature. The GaAs-based devices, which are monolithically integrated on the same wafer, exhibit ground state lasing at ∼1230 nm and excited state lasing at ∼1140 nm with threshold current densities of 0.69 and 1.05 kA/cm2, respectively

    Geriatric nutritional risk index predicts all‐cause deaths in heart failure with preserved ejection fraction

    Get PDF
    AimsThe objective of the study was to evaluate whether the geriatric nutritional risk index (GNRI) at discharge may be helpful in predicting the long‐term prognosis of patients hospitalized with heart failure (HF) with preserved ejection fraction (HFpEF, left ventricular ejection fraction ≥50%), a common HF phenotype in the elderly.Methods and resultsOverall, 110 elderly HFpEF patients (≥65 years) from the Ibaraki Cardiovascular Assessment Study‐HF (n = 838) were enrolled. The mean age was 78.5 ± 7.2 years, and male patients accounted for 53.6% (n = 59). All‐cause mortality was compared between the low GNRI (<92) with moderate or severe nutritional risk group and the high GNRI (≥92) with no or low nutritional risk group. Cox proportional hazard regression models were constructed to evaluate the influence of the GNRI on all‐cause death with the following covariates using forward stepwise selection: age, sex, nutritional status based on the GNRI as a categorical variable, history of HF hospitalization, haemoglobin level, estimated glomerular filtration rate, log brain natriuretic peptide levels (logBNP), history of hypertension, log C‐reactive protein levels, left ventricular ejection fraction, left ventricular mass index, and the New York Heart Association functional classification (I/II or III class). The prognostic value of the GNRI was compared with that of serum albumin using C‐statistics. The GNRI was added to the logBNP, serum albumin or the body mass index was added to the logBNP, and the C‐statistic was compared using DeLong\u27s test. Cox regression analysis revealed that age and a low GNRI were independent predictors of all‐cause death (P < 0.05, n = 103; hazard ratio = 1.095, 95% confidence interval = 1.031–1.163, for age, and hazard ratio = 3.075, 95% confidence interval = 1.244–7.600, for the GNRI). DeLong\u27s test for the two correlated receiver operating characteristic curves [area under the receiver operating characteristic curve (AUROC) of serum albumin, 0.71; AUROC of the GNRI, 0.75] demonstrated significant differences between the groups (P = 0.038). Adding the GNRI to the logBNP increased the AUROC for all‐cause death significantly (0.71 and 0.80, respectively; P = 0.040, n = 105). The addition of serum albumin or the body mass index to the logBNP did not significantly increase the AUROC for all‐cause death (P = 0.082 and P = 0.29, respectively).ConclusionsNutritional screening using the GNRI at discharge is helpful to predict the long‐term prognosis of elderly HFpEF patients

    Generation and Characterization of Conditional Heparin-Binding EGF-Like Growth Factor Knockout Mice

    Get PDF
    Recently, neurotrophic factors and cytokines have been shown to be associated in psychiatric disorders, such as schizophrenia, bipolar disorder, and depression. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family, serves as a neurotrophic molecular and plays a significant role in the brain. We generated mice in which HB-EGF activity is disrupted specifically in the ventral forebrain. These knockout mice showed (a) behavioral abnormalities similar to those described in psychiatric disorders, which were ameliorated by typical or atypical antipsychotics, (b) altered dopamine and serotonin levels in the brain, (c) decreases in spine density in neurons of the prefrontal cortex, (d) reductions in the protein levels of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and post-synaptic protein-95 (PSD-95), (e) decreases in the EGF receptor, and in the calcium/calmodulin-dependent protein kinase II (CaMK II) signal cascade. These results suggest the alterations affecting HB-EGF signaling could comprise a contributing factor in psychiatric disorder

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore