3 research outputs found

    Fields with no recent legume cultivation have sufficient nitrogen-fixing rhizobia for crops of faba bean (Vicia faba L.)

    Get PDF
    Purpose (1) To assess the biological N fixation (BNF) potential of varieties of faba bean (Vicia faba L.) cropped with or without compost in an experimental field-scale rotation with no recent history of legumes, (2) to enumerate soil populations of Rhizobium leguminosarum sv. viciae (Rlv), and to genetically characterize the nodulating Rlv strains, (3) compare BNF with other sites in Britain. Methods BNF was evaluated from 2012–2015 using 15N natural abundance. Treatments were either PK fertilizer or compost. Soil rhizobial populations were determined using qPCR, the symbiotic rhizobia genotyped (16S rRNA, nodA and nodD genes), and their BNF capacity assessed ex situ. The reliance of legumes on BNF at other British sites was estimated in a single season, and their nodulating symbionts examined. Results Faba bean obtained most of its N through BNF (>80%) regardless of variety or year. N-accumulation by cvs Babylon and Boxer increased with compost treatment in 2014/2015. Rhizobial populations were c. 105-106 Rlv cells g-1 soil regardless of field or treatment. 157 Rlv microsymbionts grouped into two large nodAD clades; one mainly from V. faba, and the other from various legumes. All isolates nodulated, and some performed better than commercial inoculant strains. Conclusions Faba bean can provide most of its nitrogen through BNF and leave economically valuable residual N for subsequent crops. Recent legume cropping in northern Europe is not essential for effective nodulation: rhizobia may persist in a range of farmland locations. Nevertheless, there is the potential to apply elite rhizobial strains as inoculants in some soils

    Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades

    Full text link
    The Leguminosae, the third-largest angiosperm family, has a global distribution and high ecological and economic importance. We examine how the legume systematic research community might join forces to produce a comprehensive phylogenetic estimate for the ca. 751 genera and ca. 19,500 species of legumes and then translate it into a phylogeny-based classification. We review the current state of knowledge of legume phylogeny and highlight where problems lie, for example in taxon sampling and phylogenetic resolution. We review approaches from bioinformatics and next-generation sequencing, which can facilitate the production of better phylogenetic estimates. Finally, we examine how morphology can be incorporated into legume phylogeny to address issues in comparative biology and classification. Our goal is to stimulate the research needed to improve our knowledge of legume phylogeny and evolution; the approaches that we discuss may also be relevant to other species-rich angiosperm clades.Web of Scienc

    Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades

    Get PDF
    The Leguminosae, the third-largest angiosperm family, has a global distribution and high ecological and economic importance. We examine how the legume systematic research community might join forces to produce a comprehensive phylogenetic estimate for the ca. 751 genera and ca. 19,500 species of legumes and then translate it into a phylogeny-based classification. We review the current state of knowledge of legume phylogeny and highlight where problems lie, for example in taxon sampling and phylogenetic resolution. We review approaches from bioinformatics and next-generation sequencing, which can facilitate the production of better phylogenetic estimates. Finally, we examine how morphology can be incorporated into legume phylogeny to address issues in comparative biology and classification. Our goal is to stimulate the research needed to improve our knowledge of legume phylogeny and evolution; the approaches that we discuss may also be relevant to other species-rich angiosperm clades.Fil: Bruneau, Anne. University of Montreal; CanadáFil: Doyle, Jeff J.. Cornell University; Estados UnidosFil: Herendeen, Patrick. Chicago Botanic Garden; Estados UnidosFil: Hughes, Colin. Universitat Zurich; SuizaFil: Kenicer, Greg. Royal Botanic Garden Edinburgh; Reino UnidoFil: Lewis, Gwilym. Royal Botanic Gardens; Reino UnidoFil: Mackinder, Barbara. Royal Botanic Gardens; Reino Unido. Royal Botanic Garden Edinburgh; Reino UnidoFil: Pennington, R. Toby. Royal Botanic Garden Edinburgh; Reino UnidoFil: Sanderson, Michael J.. University of Arizona; Estados UnidosFil: Wojciechowski, Martin F.. Arizona State University; Estados UnidosFil: Boatwright, Stephen. University of the Western Cape; SudáfricaFil: Brown, Gillian. The University of Melbourne; AustraliaFil: Cardoso, Domingos. Universidade Estadual de Feira de Santana; BrasilFil: Crisp, Michael. Australian National University; AustraliaFil: Egan, Ashley. East Carolina University; Estados UnidosFil: Fortunato, Renée Hersilia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Hawkins, Julie. University of Reading; Reino UnidoFil: Kajita, Tadashi. Chiba University; JapónFil: Klitgaard, Bente. Royal Botanic Gardens; Reino UnidoFil: Koenen, Erik. Universitat Zurich; SuizaFil: Lavin, Matt. State University of Montana; Estados UnidosFil: Luckow, Melissa. Cornell University; Estados UnidosFil: Marazzi, Brigitte. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: McMahon, Michelle M.. University of Arizona; Estados UnidosFil: Miller, Joseph T.. Australian National Herbarium. CSIRO Plant Industry. Centre for Australian National Biodiversity Research; AustraliaFil: Murphy, Daniel J.. Royal Botanic Gardens Melbourne; AustraliaFil: Ohashi, Hiroyoshi. Tohoku University; JapónFil: Queiroz, Luciano P. de. Universidade Estadual de Feira de Santana; BrasilFil: Rico, Lourdes. Royal Botanic Gardens; Reino UnidoFil: Särkinen, Tiina. Natural History Museum; Reino UnidoFil: Schrire, Brian. Royal Botanic Gardens; Reino UnidoFil: Simon, Marcelo F.. Embrapa Recursos Genéticos e Biotecnologia; BrasilFil: Souza, Elvia R.. Universidade Estadual de Feira de Santana; BrasilFil: Steele, Kelly. Arizona State University; Estados UnidosFil: Torke, Benjamin M.. New York Botanical Garden; Estados UnidosFil: Wieringa, Jan J.. University of Agriculture Wageningen; Países Bajos. Wageningen University. Netherlands Centre for Biodiversity Naturalis; Países BajosFil: van Wyk, Ben Erik. University of Johannesburgo; SudáfricaFil: Legume Phylogeny Working Group. No especifica
    corecore