5 research outputs found

    Using Gaussian processes to model light curves in the presence of flickering: the eclipsing cataclysmic variable ASASSN-14ag

    Get PDF
    The majority of cataclysmic variable (CV) stars contain a stochastic noise component in their light curves, commonly referred to as flickering. This can significantly affect the morphology of CV eclipses and increases the difficulty in obtaining accurate system parameters with reliable errors through eclipse modelling. Here we introduce a new approach to eclipse modelling, which models CV flickering with the help of Gaussian processes (GPs). A parametrized eclipse model – with an additional GP component – is simultaneously fitted to eight eclipses of the dwarf nova ASASSN-14ag and system parameters determined. We obtain a mass ratio q = 0.149 ± 0.016 and inclination i = 83.∘_{.}^{\circ}4 −0.∘6+0.∘9^{+0{^{\circ}_{.}} 9}_{-0{^{\circ}_{.}} 6}. The white dwarf and donor masses were found to be Mw = 0.63 ± 0.04 M⊙ and Md = 0.093 −0.012+0.015^{+0.015}_{-0.012} M⊙, respectively. A white dwarf temperature Tw = 14 000 −2000+2200^{+2200}_{-2000} K and distance d = 146 −20+24^{+24}_{-20} pc were determined through multicolour photometry. We find GPs to be an effective way of modelling flickering in CV light curves and plan to use this new eclipse modelling approach going forward

    SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Get PDF
    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parameterised eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ±\pm 0.0020 and inclination i = 85.74 ±\pm 0.21∘^{\circ}. The white dwarf and donor masses were found to be Mw_{\mathrm{w}} = 0.800 ±\pm 0.015 M⊙_{\odot} and Md_{\mathrm{d}} = 0.0436 ±\pm 0.0020 M⊙_{\odot}, respectively. A temperature Tw_{\mathrm{w}} = 13300 ±\pm 1100 K and distance d = 367 ±\pm 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood

    SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Get PDF
    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parameterised eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ±\pm 0.0020 and inclination i = 85.74 ±\pm 0.21∘^{\circ}. The white dwarf and donor masses were found to be Mw_{\mathrm{w}} = 0.800 ±\pm 0.015 M⊙_{\odot} and Md_{\mathrm{d}} = 0.0436 ±\pm 0.0020 M⊙_{\odot}, respectively. A temperature Tw_{\mathrm{w}} = 13300 ±\pm 1100 K and distance d = 367 ±\pm 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood

    Using Gaussian processes to model light curves in the presence of flickering: the eclipsing cataclysmic variable ASASSN-14ag

    Get PDF
    The majority of cataclysmic variable (CV) stars contain a stochastic noise component in their light curves, commonly referred to as flickering. This can significantly affect the morphology of CV eclipses and increases the difficulty in obtaining accurate system parameters with reliable errors through eclipse modelling. Here we introduce a new approach to eclipse modelling, which models CV flickering with the help of Gaussian processes (GPs). A parameterised eclipse model - with an additional GP component - is simultaneously fit to 8 eclipses of the dwarf nova ASASSN-14ag and system parameters determined. We obtain a mass ratio qq = 0.149 ±\pm 0.016 and inclination ii = 83.4 −0.6+0.9^{+0.9}_{-0.6} ∘^{\circ}. The white dwarf and donor masses were found to be MwM_{w} = 0.63 ±\pm 0.04 M⊙M_{\odot} and MdM_{d} = 0.093 −0.012+0.015^{+0.015}_{-0.012} M⊙M_{\odot}, respectively. A white dwarf temperature TwT_{w} = 14000 −2000+2200^{+2200}_{-2000} K and distance dd = 146 −20+24^{+24}_{-20} pc were determined through multicolour photometry. We find GPs to be an effective way of modelling flickering in CV light curves and plan to use this new eclipse modelling approach going forward

    A double white dwarf with a paradoxical origin?

    Get PDF
    We present Hubble Space Telescope UV spectra of the 4.6-h-period double white dwarf SDSS J125733.63+542850.5. Combined with Sloan Digital Sky Survey optical data, these reveal that the massive white dwarf (secondary) has an effective temperature T2 = 13 030 ± 70 ± 150 K and a surface gravity log g2 = 8.73 ± 0.05 ± 0.05 (statistical and systematic uncertainties, respectively), leading to a mass of M2 = 1.06 M⊙. The temperature of the extremely low-mass white dwarf (primary) is substantially lower at T1 = 6400 ± 37 ± 50 K, while its surface gravity is poorly constrained by the data. The relative flux contribution of the two white dwarfs across the spectrum provides a radius ratio of R1/R2 ≃ 4.2, which, together with evolutionary models, allows us to calculate the cooling ages. The secondary massive white dwarf has a cooling age of ∼1 Gyr, while that of the primary low-mass white dwarf is likely to be much longer, possibly ≳5 Gyr, depending on its mass and the strength of chemical diffusion. These results unexpectedly suggest that the low-mass white dwarf formed long before the massive white dwarf, a puzzling discovery which poses a paradox for binary evolution
    corecore