92 research outputs found

    Coexistence of Continuous Variable Quantum Key Distribution and 7 ×\times 12.5 Gbit/s Classical Channels

    Full text link
    We study coexistence of CV-QKD and 7 classical 12.5 Gbit/s on-off keying channels in WDM transmission over the C-band. We demonstrate key generation with a distilled secret key rate between 20 to 50 kbit/s in experiments running continuously over 24 hours.Comment: 2018 IEEE Summer Topicals, paper MD4.

    The Relationship Between Head Motion Synchronization and Empathy in Unidirectional Face-to-Face Communication

    Get PDF
    Embodied synchronization is widely observed in human communication, and is considered to be important in generating empathy during face-to-face communication. However, the quantitative relationship between body motion synchronization and degree of empathy is not fully understood. Therefore, we focused on head motion to investigate phase and frequency differences in head motion synchronization in relation to degree of empathy. We specifically conducted a lecture-based experiment using controlled spoken text divided into two parts: high empathy and low empathy. During the lecture, we measured the acceleration of speakers’ and listeners’ head motions using an accelerometer, and calculated the synchronization between the time-series data from their acceleration norms. The results showed greater head motion synchronization during high empathy. During high empathy, the speakers’ head motions began before those of listeners’ in the medium (2.5 to 3.5 Hz) and high (4.0 to 5.0 Hz) frequency ranges, whereas the speakers’ head motions tended to start later than those of the listeners’ in the low (1.0 to 2.0 Hz) and medium (2.5 to 3.5 Hz) frequency ranges. This suggests that the degree of empathy is reflected by a different relationship between the phase and frequency of head motion synchronization during face-to-face communication

    Expression of Ascorbate Peroxidase Derived from Cyanidioschyzon merolae in Mammalian Cells

    Get PDF
    Background: Ascorbate peroxidase (APX) derived from Cyanidioschyzon merolae, a primitive red alga living in high temperature and acidic environments, has a greater anti-oxidative capacity than similar peroxidases occurring in other plants. In the present study, we examined the ability of Cyanidioschyzon merolae-derived APX (cAPX) to increase anti-oxidative capacity when expressed in mammalian cells. Materials and Methods: The cAPX gene was introduced into the mouse fibroblast-like cell line C3H10T1/2. Production of reactive oxygen species (ROS) and/or cell viability was assessed after heat, H2O2 and acid stimulation. Results: Heat and H2O2 stimulation caused ROS production. cAPX-expressing cells were more tolerant to oxidative stress induced by heat, H2O2 and acid stimulations than control cells lacking cAPX. Conclusion: Introduction of cAPX increases anti-oxidative capacity in mammalian cells

    Suppression of Sproutys Has a Therapeutic Effect for a Mouse Model of Ischemia by Enhancing Angiogenesis

    Get PDF
    Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Phenotypic grouping of 141 BmNPVs lacking viral gene sequences

    Get PDF
    We constructed a series of gene knockout BmNPVs (KOVs) for each of 141 genes using the BmNPV T3 bacmid system and lambda red recombination system. In a subsequent analysis of the properties needed for infection using a marker gene, egfp (enhanced green fluorescent protein gene), inserted into the polyhedrin locus, the knockout viruses (KOVs) were subdivided into four phenotypic types, A to D. Type-A (86 KOVs) showed the ability to expand infections equivalent to the control while type-B (8 KOVs) spread infections more slowly. Type-C (37 KOVs) expressed egfp in transfected-BmN cells but the production of infectious viruses was not observed. Type-D (10 KOVs) showed no ability to express egfp even in the transfection experiments. KOVs lacking genes (pkip (Bm15), gp41 (Bm66), bro-d (Bm131), Bm20, 48, 65, 91, 93, or 101) previously identified as being essential, were placed in the viable type-A and B categories
    corecore