22 research outputs found

    Integrated alternative approaches to select feed-efficient rainbow trout families to enhance the plant protein utilization

    No full text
    Abstract Improving feed utilization efficiency is a challenge in aquaculture. Therefore, we developed an indirect benchmark to use in selecting trout for improved efficiency of feed utilization on plant protein (soy)-based diets, with the long-term goal of reducing the cost of commercial trout production. We used a four-part integrative approach to identify feed efficient individuals among 1595 fish coming from 12 genetically selected families by establishing the phenotypic relationship between feed conversion ratio (FCR) and body weight variations using compensatory feeding regimes. Additionally, we examined the nutritional composition of fish filet for each efficiency phenotype during the compensatory regimen. Our findings showed that the fish with the lowest weight loss during a feed deprivation period and the highest weight gain during the refeeding period (FD−/RF +) demonstrated the lowest FCR (FCR = 0.99) and consisted of individuals from several lines. This finding confirms the possibility of improving feed efficiency in mixed lines. Although feeding period has an effect on nutritional composition of fillet, such selection criteria did not show an effect on groups. Overall, successful selection for the improvement of feed efficiency will have a broad application to commercial fish selective breeding programs, leading to increased aquaculture sustainability in the long run

    Effect of Soy Protein Products and Gum Inclusion in Feed on Fecal Particle Size Profile of Rainbow Trout

    No full text
    Replacement of fishmeal (FM) with alternative plant proteins, especially soybean meal (SBM), can cause a diarrhea-like symptom in rainbow trout (RBT), characterized by very fine fecal particles. These fines do not settle out in raceway effluent for collection and can contribute to pollution of receiving waters. In this study, two experiments were conducted. Experiment 1 examined effects of nine protein sources (sardine meal, menhaden meal, soy protein concentrates (SPC) (three types), SBM (regular and high protein), corn protein concentrate (CPC), and poultry by-product meal (PBM)) on fecal particle size distribution. Results showed that all five soy-based diets produced feces in RBT having 75.7–89.3% fines and only about 1.0% large particles, while the remaining four diets yielded feces having a balanced particle size distribution. Oligosaccharides present naturally in soy products, thought to contribute fecal fines, were not correlated to fecal particle size classes. Instead, high crude fiber content in soy-based diets was found to be responsible for unbalanced fecal particle distribution in RBT. Experiment 2 examined if improvements in formulation could reduce the negative effect of soy-based ingredients. Eight practical diets (FM, SPC, SPC + 0.3% guar gum, PBM + CPC, PBM + CPC + 20 or 30% SPC, and PBM + CPC + 20 or 30% SPC + 0.3% guar gum) were formulated to contain 40% protein and 20% lipid. Results showed that diets containing mixtures of PBM, CPC, and 20% or 30% SPC plus guar gum produced trout feces with the highest percentage of large particles and lowest of fines, while the diet containing SPC alone (56%) plus guar gum resulted in trout feces having the highest content of mid-size particles. It was concluded that crude fiber in soy protein products (SBM and SPC) caused undesirable fecal particle profiles in RBT, and the addition of guar gum could significantly alleviate this negative effect

    Alteration in expression of atrogenes and IGF-1 induced by fasting in Nile tilapia Oreochromis niloticus juveniles

    No full text
    Abstract The growth rate of farmed fish is an important factor regarding aquaculture success. An understanding of the cellular events that occur in skeletal muscle when fish undergo periods of fasting and refeeding provides information useful in developing alternative feeding strategies for improving muscle growth in commercially cultivated species. To evaluate the effect of 1–3 weeks of fasting and 10 weeks of refeeding in Nile tilapia juveniles, we analyzed the growth performance and changes in muscle cellularity and the expression of the following growth and muscle related genes: MyoD, myogenin, IGF-1, IGF-1 receptor, MuRF-1, atrogin-1 and myostatin. Reduced body mass was observed in all three groups of fasted fish during their time off feed, and 10 weeks of refeeding resulted in partial compensatory growth of body mass. No differences in the frequency of white muscle fiber diameters were observed between fasted and fed control fish treatments. However, changes in gene expression induced by fasting and refeeding were found. IGF-1 receptor, ubiquitin ligases MuRF1 and atrogin-1 expression increased during the 1–3 weeks of fasting, while IGF-1 levels dropped significantly (P < 0.001) compared to the control treatment. Furthermore, myogenin mRNA level in fish submitted to 3 weeks of fasting was higher in comparison to the control treatment (P < 0.05). Overall, our results showed that 1–3 weeks of fasting can induce muscle atrophy activation in Nile tilapia juveniles, and 10 weeks of refeeding is enough to induce only partial compensatory growth

    Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis

    No full text
    <div><p>Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model.</p></div

    Digesta and Plasma Metabolomics of Rainbow Trout Strains with Varied Tolerance of Plant-Based Diets Highlights Potential for Non-Lethal Assessments of Enteritis Development

    No full text
    The replacement of fishmeal in aquafeeds is essential to the sustainability of aquaculture. Besides the procurement of alternative protein sources, fish can also be selected for better performance on plant-based alternative diets. Rainbow trout (Oncorhynchus mykiss) is one such species in which the strain ARS-Sel has been selected for higher growth and enhanced utilization when fed soy-based diets. The aim of this study was to compare fish growth and plasma and digesta metabolomes between ARS-Sel and two commercial strains (CS-1 and CS-2), when fed plant-protein (PM) and fishmeal-based (FM) diets, and to correlate them with the onset of enteritis. An NMR-metabolomics approach was taken to assess plasma and digesta metabolite profiles. Diet and strain showed significant effects on fish growth, with the ARS-Sel fish receiving the PM diet reaching the highest final weight at sampling. Multivariate analysis revealed differences between plasma and digesta metabolite profiles of ARS-Sel and CS (CS-1 considered together with CS-2) PM-fed groups in the early stages of enteritis development, which was confirmed by intestinal histology. As reported in previous studies, the ARS-Sel strain performed better than the commercial strains when fed the PM diet. Our findings also suggest that metabolomic profiles of plasma and digesta, samples of which can be obtained through non-lethal methods, offer valuable insight in monitoring the occurrence of enteritis in carnivorous aquaculture species due to plant-based diets

    Photomicrographs of distal intestines at 400x magnification.

    No full text
    <p>(a). A representative image of selected fish reared for 12-weeks on plant protein based feed, similar to selected and non-selected fish reared on the fishmeal based feed (b). A representative image of non-selected fish reared for 12-weeks on the plant protein based feed. Intracytoplasmic supranuclear vacuoles (asterisk), intraepithelial lymphocytes (arrowhead) and mucous cell hyperplasia (arrow) are so indicated. Scale is depicted by horizontal bar.</p
    corecore