385 research outputs found

    PASD1: a promising target for the immunotherapy of haematological malignancies

    Get PDF
    In general, there is a lack of good immunotherapy targets within the spectrum of haematological malignancies. However haematopoietic stem cell transplants and continuing antigen discovery have allowed further insight into how further improvements in outcomes for patients might be achieved. Most patients with haematological malignancies can be treated with conventional therapies such as radio- and chemotherapy and will attain first remission. However the removal of residual diseased cells is essential to prevent relapse and its associated high mortality. PASD1 is one of the most tissue restricted cancer-testis (CT) antigens with expression limited to primary spermatagonia in healthy tissue. However, characterisation of PASD1 expression in cancers has been predominantly focussed on haematological malignancies where the inappropriate expression of PASD1 was first identified. PASD1 has one of the highest frequencies of expression of all CT antigens in acute myeloid leukaemia, with some suggestion of its role as a biomarker in diffuse large B-cell lymphoma. Here we describe the characterisation of the function and expression patterns of PASD1 in cell lines and primary tissues. Development of DNA vaccines targeting PASD1 epitopes demonstrate effective ex vivo T-cell responses in terms of IFNγ secretion and tumour cell killing. Of particular note these vaccines have led to the destruction of cells which process and present endogenous PASD1 indicating that effectively primed CTLs could kill PASD1-positive tumour cells

    Identification of Genes Whose Expression Overlaps Age Boundaries and Correlates with Risk Groups in Paediatric and Adult Acute Myeloid Leukaemia

    Get PDF
    Few studies have compared gene expression in paediatric and adult acute myeloid leukaemia (AML). In this study, we have analysed mRNA-sequencing data from two publicly accessible databases: (1) National Cancer Institute's Therapeutically Applicable Research to Generate Effective Treatments (NCI-TARGET), examining paediatric patients, and (2) The Cancer Genome Atlas (TCGA), examining adult patients with AML. With a particular focus on 144 known tumour antigens, we identified STEAP1, SAGE1, MORC4, SLC34A2 and CEACAM3 as significantly different in their expression between standard and low risk paediatric AML patient subgroups, as well as between poor and good, and intermediate and good risk adult AML patient subgroups. We found significant differences in event-free survival (EFS) in paediatric AML patients, when comparing standard and low risk subgroups, and quartile expression levels of BIRC5, MAGEF1, MELTF, STEAP1 and VGLL4. We found significant differences in EFS in adult AML patients when comparing intermediate and good, and poor and good risk adult AML patient subgroups and quartile expression levels of MORC4 and SAGE1, respectively. When examining Kyoto Encyclopedia of Genes and Genomes (KEGG) (2016) pathway data, we found that genes altered in AML were involved in key processes such as the evasion of apoptosis (BIRC5, WNT1) or the control of cell proliferation (SSX2IP, AML1-ETO). For the first time we have compared gene expression in paediatric AML patients with that of adult AML patients. This study provides unique insights into the differences and similarities in the gene expression that underlies AML, the genes that are significantly differently expressed between risk subgroups, and provides new insights into the molecular pathways involved in AML pathogenesis

    Infrequent expression of the Cancer-Testis antigen, PASD1, in ovarian cancer

    Get PDF
    Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue

    New targets for therapy: antigen identification in adults with B-cell acute lymphoblastic leukaemia

    Get PDF
    Acute lymphoblastic leukaemia (ALL) in adults is a rare and difficult-to-treat cancer that is characterised by excess lymphoblasts in the bone marrow. Although many patients achieve remission with chemotherapy, relapse rates are high and the associated impact on survival devastating. Most patients receive chemotherapy and for those whose overall fitness supports it, the most effective treatment to date is allogeneic stem cell transplant that can improve overall survival rates in part due to a ‘graft-versus-leukaemia’ effect. However, due to the rarity of this disease, and the availability of mature B-cell antigens on the cell surface, few new cancer antigens have been identified in adult B-ALL that could act as targets to remove residual disease in first remission or provide alternative targets for escape variants if and when current immunotherapy strategies fail. We have used RT-PCR analysis, literature searches, antibody-specific profiling and gene expression microarray analysis to identify and prioritise antigens as novel targets for the treatment of adult B-ALL

    Decitabine-Vorinostat combination treatment in acute myeloid leukemia activates pathways with potential for novel triple therapy

    Get PDF
    Despite advancements in cancer therapeutics, acute myeloid leukemia patients over 60 years old have a 5-year survival rate of less than 8%. In an attempt to improve this, epigenetic modifying agents have been combined as therapies in clinical studies. In particular combinations with Decitabine and Vorinostat have had varying degrees of efficacy. This study therefore aimed to understand the underlying molecular mechanisms of these agents to identify potential rational epi-sensitized combinations. Combined Decitabine-Vorinostat treatment synergistically decreased cell proliferation, induced apoptosis, enhanced acetylation of histones and further decreased DNMT1 protein with HL-60 cells showing a greater sensitivity to the combined treatment than OCI-AML3. Combination therapy led to reprogramming of unique target genes including AXL, a receptor tyrosine kinase associated with cell survival and a poor prognosis in AML, which was significantly upregulated following treatment. Therefore targeting AXL following epi-sensitization with Decitabine and Vorinostat may be a suitable triple combination. To test this, cells were treated with a novel triple combination therapy including BGB324, an AXL specific inhibitor. Triple combination increased the sensitivity of OCI-AML3 cells to Decitabine and Vorinostat as shown through viability assays and significantly extended the survival of mice transplanted with pretreated OCI-AML3 cells, while bioluminescence imaging showed the decrease in disease burden following triple combination treatment. Further investigation is required to optimize this triple combination, however, these results suggest that AXL is a potential marker of response to Decitabine-Vorinostat combination treatment and offers a new avenue of epigenetic combination therapies for acute myeloid leukemia

    Multiplex Screening for Interacting Compounds in Paediatric Acute Myeloid Leukaemia

    Get PDF
    Paediatric acute myeloid leukaemia (AML) is a heterogeneous disease characterised by the malignant transformation of myeloid precursor cells with impaired differentiation. Standard therapy for paediatric AML has remained largely unchanged for over four decades and, combined with inadequate understanding of the biology of paediatric AML, has limited the progress of targeted therapies in this cohort. In recent years, the search for novel targets for the treatment of paediatric AML has accelerated in parallel with advanced genomic technologies which explore the mutational and transcriptional landscape of this disease. Exploiting the large combinatorial space of existing drugs provides an untapped resource for the identification of potential combination therapies for the treatment of paediatric AML. We have previously designed a multiplex screening strategy known as Multiplex Screening for Interacting Compounds in AML (MuSICAL); using an algorithm designed in-house, we screened all pairings of 384 FDA-approved compounds in less than 4000 wells by pooling drugs into 10 compounds per well. This approach maximised the probability of identifying new compound combinations with therapeutic potential while minimising cost, replication and redundancy. This screening strategy identified the triple combination of glimepiride, a sulfonylurea; pancuronium dibromide, a neuromuscular blocking agent; and vinblastine sulfate, a vinca alkaloid, as a potential therapy for paediatric AML. We envision that this approach can be used for a variety of disease-relevant screens allowing the efficient repurposing of drugs that can be rapidly moved into the clinic

    GATA2 regulates the erythropoietin receptor in t(12;21) ALL.

    Get PDF
    The t(12;21) (p13;q22) chromosomal translocation resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality in children with acute lymphoblastic leukemia (ALL). The erythropoietin receptor (EPOR), usually associated with erythroid progenitor cells, is highly expressed in ETV6/RUNX1 positive cases compared to other B-lineage ALL subtypes. Gene expression analysis of a microarray database and direct quantitative analysis of patient samples revealed strong correlation between EPOR and GATA2 expression in ALL, and higher expression of GATA2 in t(12;21) patients. The mechanism of EPOR regulation was mainly investigated using two B-ALL cell lines: REH, which harbor and express the ETV6/RUNX1 fusion gene; and NALM-6, which do not. Expression of EPOR was increased in REH cells compared to NALM-6 cells. Moreover, of the six GATA family members only GATA2 was differentially expressed with substantially higher levels present in REH cells. GATA2 was shown to bind to the EPOR 5'-UTR in REH, but did not bind in NALM-6 cells. Overexpression of GATA2 led to an increase in EPOR expression in REH cells only, indicating that GATA2 regulates EPOR but is dependent on the cellular context. Both EPOR and GATA2 are hypomethylated and associated with increased mRNA expression in REH compared to NALM-6 cells. Decitabine treatment effectively reduced methylation of CpG sites in the GATA2 promoter leading to increased GATA2 expression in both cell lines. Although Decitabine also reduced an already low level of methylation of the EPOR in NALM-6 cells there was no increase in EPOR expression. Furthermore, EPOR and GATA2 are regulated post-transcriptionally by miR-362 and miR-650, respectively. Overall our data show that EPOR expression in t(12;21) B-ALL cells, is regulated by GATA2 and is mediated through epigenetic, transcriptional and post-transcriptional mechanisms, contingent upon the genetic subtype of the disease
    • …
    corecore