29 research outputs found

    Early and Definitive Diagnosis of Toxic Shock Syndrome by Detection of Marked Expansion of T-Cell-Receptor Vβ2-Positive T Cells

    Get PDF
    We describe two cases of early toxic shock syndrome, caused by the superantigen produced from methicillin-resistant Staphylococcus aureus and diagnosed on the basis of an expansion of T-cell-receptor Vβ2-positive T cells. One case-patient showed atypical symptoms. Our results indicate that diagnostic systems incorporating laboratory techniques are essential for rapid, definitive diagnosis of toxic shock syndrome

    Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB2_2

    Full text link
    We examine the superconducting anisotropy γc=(mc/mab)1/2\gamma_c = (m_c / m_{ab})^{1/2} of a metallic high-TcT_c superconductor MgB2_2 by measuring the magnetic torque of a single crystal. The anisotropy γc\gamma_c does not depend sensitively on the applied magnetic field at 10 K. We obtain the anisotropy parameter γc=4.31±0.14\gamma_c = 4.31 \pm 0.14. The torque curve shows the sharp hysteresis peak when the field is applied parallel to the boron layers. This comes from the intrinsic pinning and is experimental evidence for the occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review

    Detection of Pulsed X-ray Emission from The Fastest Millisecond Pulsar PSR B1937+21 with ASCA

    Full text link
    We have detected pulsed X-ray emission from the fastest millisecond pulsar known, PSR B1937+21 (P=1.558 msec), with ASCA. The pulsar is detected as a point source above 1.7\sim 1.7 keV, with no indication of nebulosity. The source flux in the 2--10 keV band is found to be f=(3.7±0.6)×1013f = (3.7\pm 0.6) \times 10^{-13} erg s1^{-1} cm2^{-2}, which implies an isotropic luminosity of Lx=4πD2f(5.7±1.0)×1032 (D/3.6kpc)2L_{\rm x} = 4 \pi D^2 f \sim (5.7\pm 1.0) \times 10^{32} ~(D/3.6 {\rm kpc})^2 erg s1^{-1}, where D is the distance, and an X-ray efficiency of 5×104\sim 5 \times 10^{-4} relative to the spin-down power of the pulsar. The pulsation is found at the period predicted by the radio ephemeris with a very narrow primary peak, the width of which is about 1/16 phase (100μ\sim 100 \mus), near the time resolution limit (61μ61 \mus) of the observation. The instantaneous flux in the primary peak (1/16 phase interval) is found to be (4.0±0.8)×10124.0\pm 0.8) \times 10^{-12} erg s1^{-1} cm2^{-2}. Although there is an indication for the secondary peak, we consider its statistical significance too low to claim a definite detection. The narrow pulse profile and the detection in the 2--10 keV band imply that the X-ray emission is caused by the magnetospheric particle acceleration. Comparison of X-ray and radio arrival times of pulses indicates, within the timing errors, that the X-ray pulse is coincident with the radio interpulse.Comment: 14 pages with 5 figures. Ap. J. in pres

    Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data

    Get PDF
    Japanese laser interferometric gravitational wave detectors, TAMA300 and LISM, performed a coincident observation during 2001. We perform a coincidence analysis to search for inspiraling compact binaries. The length of data used for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors are operated simultaneously. TAMA300 and LISM data are analyzed by matched filtering, and candidates for gravitational wave events are obtained. If there is a true gravitational wave signal, it should appear in both data of detectors with consistent waveforms characterized by masses of stars, amplitude of the signal, the coalescence time and so on. We introduce a set of coincidence conditions of the parameters, and search for coincident events. This procedure reduces the number of fake events considerably, by a factor 104\sim 10^{-4} compared with the number of fake events in single detector analysis. We find that the number of events after imposing the coincidence conditions is consistent with the number of accidental coincidences produced purely by noise. We thus find no evidence of gravitational wave signals. We obtain an upper limit of 0.046 /hours (CL =90= 90 %) to the Galactic event rate within 1kpc from the Earth. The method used in this paper can be applied straightforwardly to the case of coincidence observations with more than two detectors with arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in Physical Review

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Discovery of the Fastest Early Optical Emission from Overluminous SN Ia 2020hvf: A Thermonuclear Explosion within a Dense Circumstellar Environment

    Get PDF
    Ia型超新星の爆発直後の閃光を捉えることに成功 --特異な爆発に至る恒星進化の謎に迫る--. 京都大学プレスリリース. 2021-12-10.In this Letter we report a discovery of a prominent flash of a peculiar overluminous Type Ia supernova, SN 2020hvf, in about 5 hr of the supernova explosion by the first wide-field mosaic CMOS sensor imager, the Tomo-e Gozen Camera. The fast evolution of the early flash was captured by intensive intranight observations via the Tomo-e Gozen high-cadence survey. Numerical simulations show that such a prominent and fast early emission is most likely generated from an interaction between 0.01 M⊙ circumstellar material (CSM) extending to a distance of ∼10¹³ cm and supernova ejecta soon after the explosion, indicating a confined dense CSM formation at the final evolution stage of the progenitor of SN 2020hvf. Based on the CSM–ejecta interaction-induced early flash, the overluminous light curve, and the high ejecta velocity of SN 2020hvf, we suggest that the SN 2020hvf may originate from a thermonuclear explosion of a super-Chandrasekhar-mass white dwarf (“super-MCh WD”). Systematical investigations on explosion mechanisms and hydrodynamic simulations of the super-MCh WD explosion are required to further test the suggested scenario and understand the progenitor of this peculiar supernova

    Forbidden transitions in nuclear weak processes relevant to neutrino detection, nucleosynthesis and evolution of stars

    Get PDF
    The distribution of the spin-dipole strengths in 16O and neutrino-induced reactions on 16O areinvestigated by shell-model calculations with new shell-model Hamiltonians. Chargedcurrent and neutral-current reactioncross sections are valuated in various particle and γ emission channels as well as the total ones at neutrinoenergies up to Eν≈ 100 MeV. Effects of multiparticle emission channels, especially the αp emission channels, on nucleosynthesis of 11B and 11C in core-collapse supernova explosions are investigated. The MSW neutrino oscillation effects oncharged-current reaction cross sections are investigated for future supernova burst. Electron capture rates for a forbidden transition 20Ne(Og.s.+) → 20F(2g.s.+) in stellar environments are evaluated by the multipole expansion method with the use of shell model Hamiltonians, and compared with those obtained by a prescription that treats the transition as an allowed GamowTeller (GT) transition. Different electron energy dependence of the transition strengths between the two methods is found to lead to sizable differences in the weak rates of the two methods
    corecore