1,223 research outputs found

    Temporal Map Formation in the Barn Owl’s Brain

    Get PDF
    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise

    Marx, Wertkritik and the Illusions of State, Politics and Law

    Get PDF

    Learning to Discriminate Through Long-Term Changes of Dynamical Synaptic Transmission

    Get PDF
    Short-term synaptic plasticity is modulated by long-term synaptic changes. There is, however, no general agreement on the computational role of this interaction. Here, we derive a learning rule for the release probability and the maximal synaptic conductance in a circuit model with combined recurrent and feedforward connections that allows learning to discriminate among natural inputs. Short-term synaptic plasticity thereby provides a nonlinear expansion of the input space of a linear classifier, whereas the random recurrent network serves to decorrelate the expanded input space. Computer simulations reveal that the twofold increase in the number of input dimensions through short-term synaptic plasticity improves the performance of a standard perceptron up to 100%. The distributions of release probabilities and maximal synaptic conductances at the capacity limit strongly depend on the balance between excitation and inhibition. The model also suggests a new computational interpretation of spikes evoked by stimuli outside the classical receptive field. These neuronal activitiesmay reflect decorrelation of the expanded stimulus space by intracortical synaptic connections

    Computational models of neurophysiological correlates of tinnitus

    Get PDF
    The understanding of tinnitus has progressed considerably in the past decade, but the details of the mechanisms that give rise to this phantom perception of sound without a corresponding acoustic stimulus have not yet been pinpointed. It is now clear that tinnitus is generated in the brain, not in the ear, and that it is correlated with pathologically altered spontaneous activity of neurons in the central auditory system. Both increased spontaneous firing rates and increased neuronal synchrony have been identified as putative neuronal correlates of phantom sounds in animal models, and both phenomena can be triggered by damage to the cochlea. Various mechanisms could underlie the generation of such aberrant activity. At the cellular level, decreased synaptic inhibition and increased neuronal excitability, which may be related to homeostatic plasticity, could lead to an over-amplification of natural spontaneous activity. At the network level, lateral inhibition could amplify differences in spontaneous activity, and structural changes such as reorganization of tonotopic maps could lead to self-sustained activity in recurrently connected neurons. However, it is difficult to disentangle the contributions of different mechanisms in experiments, especially since not all changes observed in animal models of tinnitus are necessarily related to tinnitus. Computational modeling presents an opportunity of evaluating these mechanisms and their relation to tinnitus. Here we review the computational models for the generation of neurophysiological correlates of tinnitus that have been proposed so far, and evaluate predictions and compare them to available data. We also assess the limits of their explanatory power, thus demonstrating where an understanding is still lacking and where further research may be needed. Identifying appropriate models is important for finding therapies, and we therefore, also summarize the implications of the models for approaches to treat tinnitus

    Single-Trial Phase Precession in the Hippocampus

    Get PDF
    During the crossing of the place field of a pyramidal cell in the rat hippocampus, the firing phase of the cell decreases with respect to the local theta rhythm. This phase precession is usually studied on the basis of data in which many place field traversals are pooled together. Here we study properties of phase precession in single trials. We found that single-trial and pooled-trial phase precession were different with respect to phase-position correlation, phase-time correlation, and phase range. Whereas pooled-trial phase precession may span 360°, the most frequent single-trial phase range was only ∼180°. In pooled trials, the correlation between phase and position (r = −0.58) was stronger than the correlation between phase and time (r = −0.27), whereas in single trials these correlations (r = −0.61 for both) were not significantly different. Next, we demonstrated that phase precession exhibited a large trial-to-trial variability. Overall, only a small fraction of the trial-to-trial variability in measures of phase precession (e.g., slope or offset) could be explained by other single-trial properties (such as running speed or firing rate), whereas the larger part of the variability remains to be explained. Finally, we found that surrogate single trials, created by randomly drawing spikes from the pooled data, are not equivalent to experimental single trials: pooling over trials therefore changes basic measures of phase precession. These findings indicate that single trials may be better suited for encoding temporally structured events than is suggested by the pooled data

    Challenges in curriculum adaptation across institutions of higher education: international and national student transfer

    Get PDF
    Journal ArticleThe challenges associated with student transfer between institutions of higher education are investigated. The Utah System of Higher Education (USHE) requires that undergraduate courses from non-ABET accredited institutions are recognized across public universities and colleges in Utah Based on empirical data, we show that as a result, curriculum development now has to take place across institutions. As a first step, to maintain academic standards in this changing environment, before granted major status in Electrical Engineering, we propose an admissions test for all students. In addition, undergraduate student performance could be continuously monitored, similar to the monitoring process of international graduate students. Typically, the change in academic environment for students also includes the transition from a more personal to a more anonymous setting. Thus, we propose the creation of a "transfer student academic advisory' position-similar to an international advisor - in all colleges across Utah. Our research is a first step towards the goal of achieving unified engineering programs across institutions

    How spiking neurons give rise to a temporal-feature map

    Get PDF
    A temporal-feature map is a topographic neuronal representation of temporal attributes of phenomena or objects that occur in the outside world. We explain the evolution of such maps by means of a spike-based Hebbian learning rule in conjunction with a presynaptically unspecific contribution in that, if a synapse changes, then all other synapses connected to the same axon change by a small fraction as well. The learning equation is solved for the case of an array of Poisson neurons. We discuss the evolution of a temporal-feature map and the synchronization of the single cells’ synaptic structures, in dependence upon the strength of presynaptic unspecific learning. We also give an upper bound for the magnitude of the presynaptic interaction by estimating its impact on the noise level of synaptic growth. Finally, we compare the results with those obtained from a learning equation for nonlinear neurons and show that synaptic structure formation may profit from the nonlinearity

    Storia: Summarizing Social Media Content based on Narrative Theory using Crowdsourcing

    Full text link
    People from all over the world use social media to share thoughts and opinions about events, and understanding what people say through these channels has been of increasing interest to researchers, journalists, and marketers alike. However, while automatically generated summaries enable people to consume large amounts of data efficiently, they do not provide the context needed for a viewer to fully understand an event. Narrative structure can provide templates for the order and manner in which this data is presented to create stories that are oriented around narrative elements rather than summaries made up of facts. In this paper, we use narrative theory as a framework for identifying the links between social media content. To do this, we designed crowdsourcing tasks to generate summaries of events based on commonly used narrative templates. In a controlled study, for certain types of events, people were more emotionally engaged with stories created with narrative structure and were also more likely to recommend them to others compared to summaries created without narrative structure

    A novel random wireless packet multiple access method using CDMA

    Full text link
    corecore