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Short-term synaptic plasticity is modulated by long-term synaptic
changes. There is, however, no general agreement on the computational
role of this interaction. Here, we derive a learning rule for the release
probability and the maximal synaptic conductance in a circuit model
with combined recurrent and feedforward connections that allows learn-
ing to discriminate among natural inputs. Short-term synaptic plasticity
thereby provides a nonlinear expansion of the input space of a linear
classifier, whereas the random recurrent network serves to decorrelate
the expanded input space. Computer simulations reveal that the twofold
increase in the number of input dimensions through short-term synaptic
plasticity improves the performance of a standard perceptron up to 100%.
The distributions of release probabilities and maximal synaptic conduc-
tances at the capacity limit strongly depend on the balance between ex-
citation and inhibition. The model also suggests a new computational
interpretation of spikes evoked by stimuli outside the classical receptive
field. These neuronal activities may reflect decorrelation of the expanded
stimulus space by intracortical synaptic connections.

1 Introduction

Synapses exhibit reversible activity-induced changes of their responses that
decay faster than 1 minute. These changes are summarized as dynamical
synaptic transmission or short-term synaptic plasticity (STP) (Zucker &
Regehr, 2002). The functional role of STP has mainly been attributed to
temporal information processing (Abbott & Regehr, 2004) such as filtering
(Fortune & Rose, 2001), gain control (Abbott, Varela, Sen, & Nelson, 1997),
and providing a short-term memory buffer for the subsequent readout of
temporal activity patterns (Maass, Natschläger, & Markram, 2002; Leibold
et al., 2008). Moreover, such dynamical computations via STP can them-
selves undergo changes that last at least for many tens of minutes (Markram
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& Tsodyks, 1996; Gundlfinger et al., 2007) and are usually considered to
reflect changes in the probability of release (Tsodyks & Markram, 1997).
These changes are considered one type of long-term synaptic plasticity.
Quantitative functional hypotheses for how such an interplay between
short- and long-term plasticity can be made use of are, however, absent.

On the cognitive and behavioral levels, synaptic plasticity is seen as a
basis for learning and memory. However, it is difficult to bridge the gap
between cognition and specific features of synaptic physiology from both
the theoretical and experimental perspectives. Here, we present a theoret-
ical approach that addresses the ability of sensory systems to learn to dis-
criminate among natural stimuli, which is one of the key components for
behavioral performance (Wilson & Stevenson, 2003; Moore, Rosenberg, &
Coleman, 2005). A combined recurrent and feedforward (RFF) circuit model
(see Figure 1A) is used to demonstrate how the interplay between short-
and long-term synaptic plasticity can improve such discrimination learning
(Hertz, Krogh, & Palmer, 1991). The synaptic changes induced by the ap-
plied learning paradigm can be interpreted in terms of long-term plasticity
of the biophysical synaptic properties probability of release and maximum
conductance, which are essential for short-term synaptic plasticity.

2 Results

2.1 Circuit Model. To fulfill the minimum requirement for STP, we
consider processing of sensory information in a neuronal network during
two discrete time steps. The network is organized in N neuron pools, where
a pool is the group of neurons that receive the same sensory input and thus
exhibit the same average sensory-driven dendritic depolarization x (see
Figure 1A). We organize these depolarizations in a vector x = (x1, . . . , xN)T

representing the inputs to the whole circuit. To obtain a simple example
for natural stimulus statistics, inputs x are derived from natural images
(van Hateren & van der Schaaf, 1998) (see the appendix) by means of
independent component analysis (ICA) (Bingham & Hyvärinen, 2000).
The depolarization xn of the nth pool thus indicates the strength of the
nth independent component in the present (image) stimulus and assigns
each pool to one independent component. The decorrelation by ICA can be
interpreted biologically as the computation performed by the feedforward
synapses to the recurrent network. These feedforward weights may have
been learned during early experience but remain fixed during discrimi-
nation learning (adulthood). Instead of ICA, these synapses might as well
implement any other algorithm of decorrelation (Olshausen & Field, 1997).

In response to x, the pools exhibit a feedforward-driven activity at time
step 1, which is denoted by the vector

y(1) = (y1(1), . . . , yN(1))T = (σ (x1), . . . , σ (xN))T
. (2.1)
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Figure 1: Hybrid recurrent and feedforward (RFF) model for discriminating
natural stimuli. (A) RFF network that receives 50×50 input patches derived from
a natural image database (van Hateren & van der Schaaf, 1998). Feedforward
synapses (white circles) are fixed and perform decorrelation via independent
component analysis (ICA). The depolarization xi of neuron pool i corresponds
to the contribution of one specific independent component. The percentage of
neurons firing in response to this depolarization is denoted by yi . Recurrent
synapses Ri j (black dots) between pools j and i transform the sensory-driven
output pattern y(1) at time step 1 to a recurrently computed output pattern y(2)
at time step 2. Teacher inputs t are used for learning to classify images into ⊕
and � image by changing the probability of release and the maximal synap-
tic conductance of the synapses (black triangles) to a perceptron-like readout
neuron. (B) A pool i = 1, . . . , N contains many neurons, each of which sends
synapses to the readout neuron. (C) A fraction z(1) = y(2) [1 − y(1)] of neurons
has fired only at time step 2. The effective weight of these synapses is denoted
by w(1). The fraction z(2) = y(2) y(1) of neurons that have fired at both time steps
is connected to the readout neuron with an effective weight w(2). Neurons that
do not fire at time step 2 are assumed not to contribute to the discrimination
task (gray connections).



Learning Dynamical Synaptic Transmission 3411

Here σ is a sigmoid activation function that measures the percentage of
activated neurons in a pool for a given mean depolarization x. As such,
it captures all the biophysical dynamics arising from the different sorts of
interneurons, intrinsic recurrent couplings, and so forth. Throughout this
letter we use σ (x) = [tanh(β x) + 1]/2, in which β determines the steepness
of the activation function of the pools: for large β, the sigmoid activation
function is more steplike, and for small β, σ becomes more linear. To adjust
the sensitive range of σ to the variability of the inputs, we normalize each
stimulus vector to |x| = 1, which implies the assumption of a preprocessing
step that achieves intensity invariance.

The depolarizations ξ of the neurons in the next time step are assumed to
be determined solely by the recurrent connections. Assuming linear sum-
mation of the recurrent activities, we have

ξ = R [y(1) − y0], (2.2)

in which R is a zero-mean random matrix of recurrent weights with diagonal
elements set to zero since self-couplings within the pools are considered to
be accounted for by the activation function σ . A model variant in which
the input x is also present at time step 2 is discussed further below. The
percentage of activated neurons due to the recurrent computation at time
step 2 is denoted by the activity vector y(2) = (σ (ξ1), . . . , σ (ξN)). To this end,
the constant vector y0 = 1

2 (1, . . . , 1)T accounts for ξ to be adjusted to the
sensitive range of σ . The latter may be achieved by a homeostatic process
that tunes the balance between excitation and inhibition.

The last stage of the circuit is a feedforward projection to a readout
neuron (or pool), whose depolarization v is imparted by synaptic weights
that exhibit short-term plasticity. To also allow for supervised learning
of these synapses, the readout unit must have additional access to a
top-down teacher signal t (see Figure 1A). For now, we consider the
readout to be driven only by the activity pattern y(2) at time step 2. The
effect of temporally integrating the activity pattern y(1) is studied further
below. Thus, a pool n that was activated only at time step 2 contributes a
postsynaptic depolarization w

(1)
n yn(2), whereas a pool m that was activated

at both time steps contributes a postsynaptic depolarization w
(2)
m ym(2),

where, due to STP, the respective weights w
(1)
m and w

(2)
m are generally

different. The depolarization v at time step 2 is then constructed via a linear
combination of the two contributions,

v(x) =
N∑

n=1

yn(2) [w(1)
n (1 − yn(1)) + w(2)

n yn(1)], (2.3)

in which the weights are multiplied with the respective fractions of neurons
that were or were not active at time step 1, yn(1) and (1 − yn(1)), respectively
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(see Figures 1B and 1C). Equation 2.3 can be simplified by introducing

z(1)
n = yn(2) [1 − yn(1)] (2.4)

as the percentage of active neurons in pool n that have fired at time step 2
but did not fire at time step 1, and

z(2)
n = yn(2) yn(1) (2.5)

as the percentage of active neurons in pool n that fired at both time steps.
Combining equations 2.3 to 2.5 then yields

v(x) =
N∑

n=1

[
w(1)

n z(1)
n + w(2)

n z(2)
n

]
. (2.6)

The mapping from the activation variables y(1) and y(2) to the synaptic
state vectors z(1) and z(2) thus provides a nonlinear expansion of the
N-dimensional inputs x to the space {z(1), z(2)} with 2 N dimensions.

It is one of the hallmarks of the theory of neural networks that ex-
panding the inputs into a higher-dimensional space generally improves
discrimination learning (Hertz et al., 1991; Gardner, 1987; Vapnik, 1998;
see Figure 2A). However, since correlations in the inputs deteriorate dis-
crimination learning (Shinzato & Kabashima, 2008), such an improvement
additionally requires that the data in the expanded input space be decorre-
lated (see Figure 2B). This decorrelation can be visualized via the spectrum
of eigenvalues of the 2 N × 2 N covariance matrix of the expanded inputs.
Figures 2C to 2F show these eigenvalue spectra obtained with several two-
dimensional expansions of the activities yn. The distributions have two
peaks: a pronounced one close to zero and a second more dispersed peak at
higher values. Both peaks contain roughly half the eigenvalues (not shown).
Zero eigenvalues can be interpreted as correlated or “lost” dimensions. The
data can thus be considered less correlated the farther this first peak is away
from zero. As a quantitative measure, we therefore introduce the center of
gravity r of the first peak. For a purely feedforward nonlinear expansion,
r is very small; thus, the “effective” input space is close to N-dimensional.
When a random recurrent coupling matrix R is employed via equations 2.4
and 2.5, the first peak moves toward more positive values, and r increases.
The examples shown further suggest that the stronger the variance κ2 of R,
the more the data are decorrelated (see section 2.2).

To understand the dynamics of the recurrent circuit, we assessed
the receptive fields of the neuron pools at the different time steps by a re-
verse correlation analysis of activities y(1) and y(2) using white noise images
(see Figure 3). As expected, activities y(1) at time step 1 very much resemble
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Figure 2: Nonlinear expansion and decorrelation. (A) Top: With one stimulus
dimension x (e.g., activity of a receptor R), there is no general solution for a
linear separation problem of three arbitrarily chosen inputs (different gray lev-
els), that carry labels (⊕,�), that is, it is impossible to define a threshold value
that is exceeded for all ⊕ patterns but not for � patterns. Left: Separability can
be improved by a higher sensory resolution (e.g., two receptors R1 and R2).
A possible linear classification boundary is depicted by a dashed line. Right:
A different strategy to achieve linear separability is to introduce a nonlinear
mapping f1, f2 (dotted line) into a higher-dimensional space. (B) Linear sepa-
ration of (noisy) stimuli (clusters with different gray levels) is hampered if the
sensory activity is highly correlated between input dimensions (top). Uncor-
related input dimensions (bottom) allow linear separation. (C) Distribution of
eigenvalues λ for the covariance matrix of the 2 N-dimensional inputs obtained
by the nonlinear expansion {yn(1) [1 − yn(1)], yn(1)2}, which would result from
feedforward short-term synaptic plasticity. Here it is assumed that the same
activity y(1) is present at the two consecutive time steps. Thus, yn(1) [1 − yn(1)]
accounts for the fraction of synapses that are activated only at time step 2 and
yn(1)2 is the fraction of synapses activated at both time steps. (D) Distribution of
eigenvalues for the expansion into the space z(1), z(2) from equations 2.4 and 2.5.
The recurrent weight matrix R was generated from a zero-mean gaussian ran-
dom process with standard deviation κ = 0.5. (E) Same as in D with κ = 1.
(F) Same as in D with κ = 5. All data were obtained for β = 1.

the independent components that are represented by the input depolariza-
tions x (correlations coefficients > 0.98). At time step 2, the receptive fields
are decorrelated (correlation coefficients < 0.1). Experimentally measured
receptive fields would correspond to the (temporal) average over both time
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Figure 3: Receptive fields of the RFF circuit. (Top) Independent components
of five exemplary pools. (Two middle rows) Receptive fields obtained through
reverse correlation of the activities at time steps 1 and 2, respectively. Aver-
aging is done over 200,000 white noise stimuli; the variance of R was κ = 2.
(Bottom) Temporal average y(1)+y(2)

2 of the receptive fields. Bright colors depict
high and dark colors low responsiveness. Data were obtained for β = 1.

steps, which still largely reflect the original receptive field (correlation coef-
ficients > 0.8). With respect to cortical information processing, this scheme
can be interpreted such that early spikes that are evoked by stimuli in
the classical receptive field are useful to reliably transmit information to
higher centers. In contrast, later spikes reflect complex computations such
as decorrelation.

2.2 Discrimination of Natural Images. To test the function and evaluate
the capacity of the RFF circuit (see Figure 1) for discriminating among
natural images, we measured the discrimination performance of the RFF
circuit and compared it to that of other related networks (see Figure 4A).
The depolarization v of the readout unit at the second time step was trained
to be a decision variable for a discrimination task in the input space of
coefficients z(·) such that input images can be classified into a ⊕ and a �
category (corresponding to the teacher signals t ∈ {+1,−1}, respectively).
Such a setting is the standard discrimination paradigm for a perceptron.
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Figure 4: Discrimination learning in the RFF circuit. (A) The number Nlearn of
learning epochs required to achieve 100% performance on a discrimination task
as a function of the load α = P/N. Black dots: Perceptron rule (PR) applied to the
sensory inputs x (N dimensions). Black dashed line: PR applied to the activity
vector y(2) at time step 2 (N dimensions). Blue solid line: PR applied to the input
space {y(1)[1 − y(1)], y(1)2} from feedforward short-term synaptic plasticity (2 N
dimensions). Red line: PR applied to the input space (2 N dimensions) obtained
by recurrent decorrelation with gaussian R. Green line: Same as red line for
recurrent decorrelation with the the outer product matrix R from equation 2.7.
Brown line: Same as red line for independent and identically distributed random
inputs instead of natural images. Data were obtained with β = 5 and κ = 5 and
averaged over 200/α repetitions (see the appendix). The gray vertical line at
α = 2 indicates the capacity limit of a perceptron for N → ∞. (B) Capacity
criterion α1000 decreases with increasing memory d of the activity y(1) that
remains from time step 1. (C) Capacity criterion α1000 at which 1000 learning
epochs are required to achieve a performance of 100% correct decisions as a
function of the number N of dimensions. (D) Capacity criterion α1000 increases
with both the variance κ2 of the random recurrent weights and the steepness β

of the activation function σ . (E) Capacity criterion α1000 for κ = 64 increases with
β. (F) Improvement due to recurrence. The ratio between α1000 obtained with
recurrent couplings (κ = 64) and α1000 obtained within a feedforward setting:
The improvement with respect to the STP-mediated expansion (blue line) is
always greater than about 1.5.

The depolarization v of the readout unit determines its output O in that
O = +1 if v ≥ w0 and O = −1 if v < w0. In response to O, the weights
w(k) as well as the threshold w0 were changed according to the stan-
dard perceptron learning rule (Hertz et al., 1991): if upon presentation
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of the input image xμ the readout unit gave a correct response (Oμ = tμ),
the weights remained unchanged. If the Oμ was different from tμ, the
weights were updated by �w

(k)
n = η tμ z(k) μ

n , in which z(k) μ were the co-
efficients derived from the input xμ via equations 2.1, 2.4, and 2.5. The
constant η > 0 is called the learning rate (see the appendix). A biologi-
cally more plausible implementation of such a learning rule is discussed in
section 2.3.

To measure the performance of the learning rule, we define a learning
epoch as one consecutive presentation of all P input images and the cor-
responding weight changes. The number Nlearn of learning epochs that are
required to achieve a performance of 100% correct decisions is an increas-
ing function of the number P of learned inputs and therefore also the load
α = P/N (see Figure 4A).

The performance of the learning algorithm is compared for different
networks employing the capacity criterion α1000 at which, on average, 1000
learning epochs are required to achieve a performance of 100% correct
decisions. For input spaces with N = 128 dimensions as the ICA input
vectors x or the network activities y(2), the capacity criterion α1000 ranges
between 1 and 2 (see Figure 4A). Note that the theoretical capacity limit of
α = 2 cannot be reached since this is an asymptotic value for N → ∞ (Hertz
et al., 1991).

If we construct a 2 N-dimensional input space by nonlinear expan-
sions via STP, the capacity criterion increases beyond 2. In particular, if
we combine the nonlinear expansion via STP and the decorrelation by re-
current synaptic connections, the criterion increases to about 3 (see the
red line in Figure 4A). To check for the generality of the obtained re-
sults, we also conducted simulations with independent and identically dis-
tributed (i.i.d.) random inputs that were uniformly distributed with zero
mean and variance 1. Learning with these i.i.d. inputs exhibits a simi-
lar time course as for the ICA inputs; it is even slightly faster (see the
brown line in Figure 4A). Hence, discrimination learning of the RFF cir-
cuit on natural images is virtually as good as for ideally uncorrelated noise
inputs.

In equation 2.2, we assumed the feedforward input x to occur only at
time step 1. For static inputs, however, it is a reasonable assumption that
the input is present at both time steps. In terms of the depolarization ξ at
time step 2, this would require changing equation 2.2 to

ξ = R [y(1) − y0] + x.

Such a static input pattern could easily induce correlations between activity
patterns y(1) and y(2). Using this model variant, we therefore tested whether
these correlations can be removed by an appropriately chosen recurrent
coupling matrix. Assuming the activity patterns y(1) to be approximately
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uncorrelated,

N∑
j=1

[yμ

j (1) − y0] [yν
j (1) − y0] ≈ δμν |yμ(1) − y0|2,

a natural choice for such a coupling matrix is the outer product,

(R)i j = κ

P∑
μ=1

[
�

μ

i − xμ

i

] yμ(1) j − y0

|yμ(1) − y0|2 . (2.7)

Here, �μ (μ = 1, . . . , P) denote P given random patterns (mean: 0, variance
1) that are uncorrelated to the inputs xμ. As shown in Figure 4A (green trace),
the criterion α1000 = 2.85 obtained with the matrix from equation 2.7 is only
slightly worse than that obtained by decorrelating with a gaussian random
matrix. This means that at least in principle, one can find a learning rule
for the recurrent connections that decorrelates the activity patterns y(1) and
y(2) even if the input is present at both time steps.

To evaluate the effect of subthreshold temporal integration at the readout
unit, we next investigated the nonlinear expansion z(1)

n = yn(1) d + yn(2) [1 −
yn(1)], in which d measures the amount of depolarization that remains
from time step 1. We find that the capacity criterion α1000 decreases with
increasing d (see Figure 4B). This means that if the activity pattern of the
first time step is still partly present at the second time step owing to slow
synaptic integration, discrimination learning is less efficient.

Next, we tested the generality of the used capacity criterion α1000 by
running simulations for different input dimensions N and found that α1000

decreases with the number of dimensions (see Figure 4C). This is because
the time to convergence increases with the number of input dimensions and
the learning rule has not fully converged after 1000 epochs. Nevertheless,
α1000 is good enough to clearly discriminate between the learning curves for
the investigated models. A capacity estimate that is closer to the theoretical
limit might be obtained by increasing the number of permitted learning
epochs beyond 1000. This, however, would heavily increase the required
computing time. Moreover, since we considered only a small, finite N, not
all learning problems may converge as α gets closer to the capacity limit.
Thus, with a higher number of permitted epochs, one would have to give
up the 100% correct criterion. To conclude, α1000 is a reasonable choice for a
capacity criterion for the practical purposes of this study; however, it does
not allow for comparison between different input dimensions.

In a further series of simulations, we studied how discrimination learn-
ing depends on the circuit parameters κ and β. We found that α1000 increases
with the variance κ2 of the random weights in R, but also with the steepness
β of the activation function σ (see Figures 4D and 4E). The improvement
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of the discrimination performance due to recurrent couplings was mea-
sured via the ratio between the criteria α1000 with and without recurrent
couplings (see Figure 4F). As compared to the 2 N-dimensional input space
{y(1) [1 − y(1)], y(1)2} motivated by feedforward short-term synaptic plas-
ticity, additional recurrence yielded at least a 1.5-fold improvement.

2.3 Interconnecting Short- and Long-Term Synaptic Plasticity. The
synaptic weights w(1) and w(2) are properties of the same synapse. For
training the depolarization v of the readout unit on a discrimination task,
we have to make sure that these weights can be altered independently by
long-term modifications. We therefore employ a biophysically motivated
model in which the weight w

(·)
n is a product of the following three quan-

tities: the probability Pn of release, the (relative) number Rn of readily re-
leasable vesicles, and the postsynaptic amplitude Qn on release of a vesicle.
The last captures both the quantal size and the amount and sensitivity of
postsynaptic receptors. Then the (effective) weights can be written as

w(k)
n = P (k)

n R(k)
n Q(k)

n − g, (2.8)

in which the g > 0 introduces a negative contribution −g yn(2) to the mem-
brane potential v(x) (see equation 2.3). This inhibition is proportional to the
activation yn(2) of the pool at time step 2 and can therefore be interpreted
as a constant, pool-specific, feedforward inhibition.

Thus, the weights w(1) upon transmission of the first pulse are
w

(1)
n = P (1)

n R(1)
n Q(1)

n − g = pn an − g, in which pn denotes the baseline proba-
bility of release P (1)

n and the maximal synaptic conductance an is the product
of the baseline values R(1)

n and Q(1)
n .

If the synapse transmits a second pulse, the probability of release is
enhanced to P (2)

n = F (P (1)
n ) due to facilitory processes such as residual cal-

cium (Zucker & Regehr, 2002; Felmy, Neher, & Schneggenburger, 2003).
Figure 5A depicts the facilitation model F (p) (see the appendix). The sec-
ond factor that determines the synaptic amplitude at the second pulse
is the size R(2) of the pool of vesicles that are releasable. Assuming that
the replenishment of vesicles is much slower than the interpulse interval,
the pool size is reduced to R(2)

n = R(1)
n − pn R(1)

n owing to the depletion of
vesicles by the first pulse. This depletion reduces the amount of released
transmitter and accounts for short-term synaptic depression. For simplicity,
we furthermore assume the amplitude Q to be unchanged: Q(2) = Q(1) (see
section 3). Thus the weights w(2) on transmission of the second pulse are
w

(2)
n = P (2)

n R(2)
n Q(2)

n − g = F (pn) (1 − pn) an − g.
Combining the expressions for w(1) and w(2), we can derive the excitatory

paired-pulse ratio as ρ(p) = F (p) (1 − p)/p (see Figure 5B). Since ρ covers
a range between 0 (for p = 1) and its maximum (for p → 0), both weights
w

(1)
n and w

(2)
n can be adjusted independently in this range by manipulating
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Figure 5: Discrimination learning and short-term synaptic plasticity. (A) Facil-
itation F as a function of the initial release probability p from equation A.1.
(B) Excitatory paired-pulse ratio ρ(p) = [w(2) + g]/[w(1) + g] = F (p) (1 − p)/p
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function of the load (α = P/N) for the standard perceptron rule from Figure 4A
(red line) and the learning rules for a and p from equations 2.9 and 2.10 (yellow
to blue) for different values g of the feedforward inhibition. Simulations were
terminated if more than 5% of the repetitions failed to converge. (D) The load α∗
at the terminal point at which the fraction of nonconvergent repetitions exceeds
5% as a function of g. The red line depicts the capacity criterion α1000 obtained
with the standard perceptron rule. Colors correspond to g values from C.

the synaptic parameters pn and an. For small p, ρ is larger than 1, and the
synapse exhibits short-term facilitation; for large p, ρ is smaller than 1, and
the synapse exhibits short-term depression.

Synaptic learning requires implementing long-term changes of the two
parameters pn and an. Here we derive update rules for these two quantities
from the standard perceptron learning rule that provide the weight change
�w

(k)
n on presentation of a stimulus teacher pair (xμ, tμ). All results of the

letter are derived for the standard learning rule (Hertz et al., 1991), that is,
�w

(k)
n = 0 if the output unit responds correctly and �w

(k)
n = η tμ z(k) μ if the

unit responds uncorrectly.
The basic idea is to map the weight changes differentially to parameter

changes. From w
(1)
n = pn an and w

(2)
n = pn ρ(pn) an, we obtain the differential
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changes

�w(1) = a �p + �a p

�w(2) = [a ρ + a p ρ ′(p)] �p + �a ρ p.

These two equations connect the two unknowns �a and �p to the two
weight changes �w

(k)
n . The solution of this two-dimensional system of equa-

tions provides the learning rules

�an = η tμ z(1) μ
n [ρ(pn) + pn ρ ′(pn)] − z(2) μ

n

ρ ′(pn) p2
n

(2.9)

�pn = η tμ z(2) μ
n − ρ(pn) z(1) μ

n

ρ ′(pn) pn an
. (2.10)

In equations 2.9 and 2.10, ρ ′(p) denotes the derivative of the paired-pulse
ratio (see Figure 5B). Since p is a probability, it is restricted to values between
0 and 1. The maximum conductance a is constrained to values between 0
and 1 to meet Dale’s law and to introduce an upper limit for the maximum
synaptic input.

To avoid divergences in the update rules of equations 2.9 and 2.10, we
restrict the probabilities p to values even larger than 0.01 since then (for
the present choice of F (p)) the derivative ρ ′(p) is nonzero. Moreover, we
avoid a further divergence in equation 2.10 by not updating p if a = 0. This
is reasonable, since for an = 0, all weights w

(k)
n are zero anyway.

We note that all quantities in these learning rules can be interpreted
as local—specific to the presynaptic pool for which the synaptic weight is
about to change. Moreover, since z(k)

n ∝ yn(2), all changes �an and �pn from
equations 2.9 and 2.10 are proportional to the pool’s activity yn(2) at the
second time step. This means that one can assume only those synapses to
change at which the neuron was active at time step 2. In this sense, the
update rules can also be considered local to a specific synapse.

To assess the performance of the learning rules for a and p, we have run
the same simulation as for the standard learning rule shown in Figure 4A.
The obtained learning curves exhibit two major differences (see Figure 5C).
First, the learning rule no longer always converges. This can be understood
since pn as a probability is bounded and an is limited to positive values.
As a consequence, w(1) and w(2) can no longer take all possible values, and
hence not all problems can be separated. We thus require introducing a
new capacity criterion, the terminal load α∗, at which the error rate defined
as the fraction of nonconverging repetitions increases beyond 5%. Second,
the capacity criterion depends on the magnitude g of feedforward inhibi-
tion. However, there exists an optimal g ≈ 0.3 (see Figure 5D) for which the
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Figure 6: Distributions of synaptic parameters. (A) Distribution of the synaptic
weights w(1), and w(2) for the standard learning rule from Figure 4. (B) Scatter
plot from one example simulation. (C) Distributions of the synaptic weights
w(1) and w(2) and the respective synaptic parameters p and a at α = α∗ for four
values of g. (D) Scatter plots from one example simulation each. Distributions
in A and C were derived from 20 converging repetitions.

learning curve Nlearn(α) is virtually identical to the standard case. The ter-
minal load α∗ at this optimal g is 95% of the capacity criterion α1000 obtained
with the standard learning rule from Figure 4. The terminal load for g = 0
is about 0.4, which is similar to values reported for a sign-constrained per-
ceptron with binary inputs (Amit, Compbell, & Wong, 1989; Brunel, Hakim,
Isope, Nadal, & Barbour, 2004). More rigorous upper bounds for α∗ are hard
to find, since they strongly depend on specific properties of the input set
(Legenstein & Maass, 2008).

Next we studied the distribution of synaptic parameters close to the
capacity limit. For the standard perceptron rule, both weights w(1) and w(2)

are distributed around zero (see Figures 6A and 6B). With the learning
rules for a and p and values of g at which α∗ is larger than 1.75 (e.g.,
g = 0.1, 0.3, 0.5), the weight distributions are similar to the ones from the
standard rule (see Figures 6C and 6D). The realization of these distributions
in terms of synaptic parameters p and a , however, is different. Whereas the
distribution of p remains clustered around 0.5, the distribution of a peaks
at low values for small inhibition g or clusters around 1 for high values of



3422 C. Leibold and M. Bendels

g. If the inhibition becomes too small (e.g., g = 0) to realize a reasonable
terminal load α∗, p and a can no longer realize weight distributions that
are as broad as observed in the standard perceptron case; instead, w(1) and
w(2) are tightly clustered around zero and take only positive values (see
Figures 6C and 6D bottom row; see also Köhler & Widmaier, 1991; Brunel
et al. (2004)). The corresponding distributions of p and a are bimodal, with
most values close to the bounds of the permitted parameter range: 0 and
1. The peak at w = 0 for sign-constrained perceptrons has recently been
interpreted as to arise from the population of the so-called silent synapses
(Brunel et al., 2004), which lack postsynaptic AMPA receptors. In our model,
silent synapses would be only those that constitute the peak at a = 0.

3 Discussion

We have presented a neuronal network model that utilizes long-term
changes of short-term synaptic plasticity to improve the performance of
learning to discriminate between natural stimuli (see Figure 1A). A neu-
ronal system’s capability of learning to discriminate stimuli is generally
limited by the dimension of the input space of the learning problem. There,
Gardner’s bound (Gardner, 1987) sets the theoretical limit for the number
of discriminable stimuli to twice the dimension of the problem. A suffi-
cient discriminability of the sensory code can thus be achieved by simply
providing a large enough sensory resolution. However, the relative gain
of represented information becomes smaller with the increasing number
of sensory receptors. A different strategy to improve discriminability is to
increase the dimension of the learning problem through an additional non-
linear transformation. Such a nonlinear expansion is widely used in the
theory of statistical learning (Vapnik, 1998) and has recently been adopted
by computational neuroscience, where it is known as a liquid state machine
(Maass et al., 2002) or echo state network (Jaeger & Haas, 2004).

This letter shows that short-term synaptic plasticity can provide such
an expansion of the input space to twice the original dimension. Here,
this idea has been illustrated considering two consecutive time steps. At
the first time step, sensory information primes the feedforward synapses,
adjusting their state of facilitation and partly depleting their vesicle pool. At
the second time step, computations via recurrent synaptic connections
generate a decorrelated activity pattern (see Figure 3) to read out the
STP state at those synapses. Such a mechanism can discriminate between
synapses that were active at both time steps and those that were active
only at the second time step and thereby expands the input space to twice
its original dimension.

The discrimination performance of the proposed circuit is up to 100%
better as compared to a standard perceptron (see Figure 4A). If synaptic
integration at the readout unit bridges the gap between the two time steps
and thus parts of the activity pattern of time step 1 are still present in v at the



Learning Dynamical Synaptic Transmission 3423

second time step, discrimination performance is reduced (see Figure 4C).
Such a removal of the initial input pattern might be realized by strong
feedforward inhibition at time step 1.

Finally, we have derived a learning rule for the biophysical synaptic
parameters probability p of release at baseline and the maximal synaptic
conductance a . This learning rule achieves similarly high discrimination
performance as the standard perceptron rule (see Figure 5). Close to the
capacity limit and for balanced feedforward inhibition, the distributions of
the two synaptic parameters p and a are highly clustered (see Figures 6C
and 6D). Without feedforward inhibition (see Figure 6), the distributions
become bimodal, with most values close to the bounds of the permitted
parameter range.

The distributions of synaptic parameters can, at least in principle, be com-
pared with distributions derived from physiological experiments. These
distributions are, however, rather variable across different systems. For ex-
ample, at neonatal hippocampal Shaffer collateral synapses, probabilities
of release are distributed rather uniformly (Hanse & Gustafsson, 2001),
which, in the context of our model, would account for a naıve system
loaded far below the capacity limit. In the visual and prefrontal (Wang
et al., 2006) as well as the somatosensory cortex (Le Bè, Silberberg, Wang, &
Markram, 2007), distributions of release probabilities are more unimodal,
which is closer to what the model presented here predicts close to the ca-
pacity limit; however, the mean probability of release strongly differs across
these systems, ranging between 0.2 and 0.5. In our model, the exact value
for the mean probability of release is expected to depend on many factors.
Besides the specific model F (p) of short-term synaptic facilitation, these fac-
tors may also include sparseness in the input and output (Brunel et al., 2004).

The mathematical structure and biophysical meaning of the update rules
for the parameters a and p can be further elucidated if equations 2.9 and 2.10
are rewritten by introducing the following rate functions:

fa (p) = −ρ(p) + p ρ ′(p)
p ρ ′(p)

(3.1)

f p(p) = − ρ(p)
p ρ ′(p)

(3.2)

fx(p) = − 1
p ρ ′(p)

. (3.3)

Using these rate functions, expressing z via the activities y, and setting
tμ = −Oμ (indicating an incorrect response), the update rules read

�an = η Oμ yμ
n (2)

1
pn

[ fa (pn) − yμ
n (1) ( fa (pn) + fx(pn))] (3.4)

�pn = −η Oμ yμ
n (2)

1
an

[ f p(pn) − yμ
n (1) ( f p(pn) + fx(pn))]. (3.5)
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Figure 7: (A1–A3) Rate functions of synaptic change from equations 3.1 to 3.3.
(B1) Trajectory of the learning rule for y(1) = 0.9, y(2) = 0.9. The starting config-
uration (a = 0.25, p = 0.5) is marked with a circle. The learning rule converges
to a low-p configuration (square). (B2) Predicted synaptic responses w(1) + g
and w(2) + g on a paired pulse stimulation. Top: Derived from initial condi-
tions (circle in B1). Bottom: Derived from point of convergence (square in B1).
(C1) Same as B1 for y(1) = 0.1, y(2) = 0.9. The learning rule converges to a high-p
configuration (square). (C2) Same as B2 for y(1) = 0.1, y(2) = 0.9.

This rewriting reveals that the update rules are constructed from three com-
ponents. First is a Hebbian component O y(2) correlating pre- and postsy-
naptic activity at time step 2. Second is a state dependence expressed by the
rate functions and the prefactors 1/p and 1/a , respectively. Third, rate func-
tions depend on the history of the presynaptic activation via activity y(1)
at the first time step. The rate functions as they follow from equations 3.1
to 3.3 are plotted in Figure 7A.

The functional consequences of the plasticity rule strongly depend on
the activities y(1) and y(2) at the two time steps. Figures 7B and 7C illustrate
two examples for which the iteration of equations 2.9 and 2.10 results in
either a facilitating (see Figure 7B) or a depressing (see Figure 7C) synapse.
Considering only the first response to a paired-pulse stimulus, the former
situation would generally be considered long-term depression, whereas
the latter would be considered long-term potentiation. Of course, such
a paradigm is functionally not very helpful because for the synapse to
change, one always has to assume an incorrect response. Nevertheless, these
simulations predict that the nature of synaptic change should be different
depending on whether the presynaptic stimulation is delivered in pairs.

The model of short-term synaptic plasticity is still highly simplified.
Further parameters incorporating, for example, multiple vesicle pools,
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postsynaptic desensitization, and spike broadening (Zucker & Regehr, 2002)
have been omitted. They might provide additional degrees of freedom that
could be exploited by third or fourth spikes or complex temporal patterns.
If these additional parameters undergo long-term changes, they provide
an expansion to an even higher-dimensional input space and, hence, might
further increase the performance of discrimination learning.

Temporal integration of complex patterns has been found to increase
storage capacity without short-term plasticity (Gütig & Sompolinsky, 2006).
Here, we show that for STP and fixed interspike intervals, temporal integra-
tion at the readout unit is detrimental to the discrimination performance
(see Figure 4C). This temporal integration could be prohibited by a fast
feedforward inhibition onto the readout cells that is slightly delayed with
respect to excitation. Such a dynamical pattern has been reported in the
piriform cortex (Ketchum & Haberly, 1993).

The RFF network is inspired by analogies to biological circuits. As a first
example, one can consider thalamic activity that is fed into the recurrent
network of cortical layer IV, the output of which is then projected to layer
II/III (Lund, Angelucci, & Bressloff, 2003). A second example is provided
by the entorhinal cortex that projects to the hippocampal CA3, in which the
axons form extensive recurrent connections as well as collaterals to CA1.
The third example we mention is the olfactory system. There, the olfactory
bulb projects to the anterior piriform cortex via the lateral olfactory tract,
and the axons arising from the anterior piriform cortex make recurrent
connections as well as feedforward projections to the posterior piriform
cortex.

Although the presentation of our model makes use of analogies to the
visual system, we stress that the RFF circuit is not primarily intended
as a model of the primary visual cortex. Rather, it provides a general
principle for pattern discrimination. The (decorrelated) receptive fields of
the recurrently connected pools might thus also be auditory or olfactory
(Fried, Fuss, & Korsching, 2002). In particular, learning to discriminate
stimuli is commonly considered a problem in olfactory processing (Wilson
& Stevenson, 2003). In contrast, models for visual categorization usually
focus on generalization rather than discrimination abilities. These gener-
alization and invariance properties are often modeled as to arise from a
series of feedforward-connected layers (Riesenhuber & Poggio, 2002). For
the visual system, the RFF may thus provide an additional computational
advantage for discrimination tasks in each one of these layers. Although
the RFF model is formally restricted to static inputs x, the generalization to
dynamic input regimes (as in the auditory domain) is straightforward by
simply regarding x itself as resulting from a temporal receptive field and
assuming appropriate integration time constants.

The RFF model is formulated in terms of neuronal pools (Gerstner, 2000;
Leibold, 2004), because a direct cellular interpretation would not allow
graded activation functions σ and, moreover, would also violate Dale’s
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law. To understand how such a computational model can be realized bio-
physically in a neuronal microcircuit thus requires a detailed model of a
cortical column (Haeusler & Maass, 2007) that may take into account differ-
ent classes of interneurons and perhaps even cell morphologies. The model
presented here can thus provide a computational framework for interpret-
ing spatiotemporal population patterns in more detailed models.

Appendix: Methods

A.1 Natural Images. Sensory input was emulated by 83,340 different
random patches from the natural image selection from van Hateren and
van der Schaaf (1998). The physical dimension of the patches was 2500
(50 × 50 pixels). From those patches, feedforward inputs x = (x1, . . . , xN)T

were derived via ICA (Bingham & Hyvärinen, 2000) using the N most
significant dimensions. For discrimination learning, in a given subset of
P inputs xμ, μ = 1, . . . , P is associated randomly with a teacher signal
tμ = ±1.

A.2 Facilitation Model. Short-term synaptic facilitation is considered
to increase the probability P (2) of release on a second presynaptic spike as
compared to the probability P (1) of release on a first spike. In this letter,
this process is modeled by P (2) = F (P (1)) via the Michaelis-Menten-like
function,

F (p) =
(

p (1 + K )
1 + K p

)5/4

, (A.1)

in which, for all simulations, the saturation constant is chosen K = 30. The
power 5/4 reflects calcium-mediated interrelation of facilitation and release
probability by assuming, for example, the following power laws: P (1)

n ∝
[Ca2+]4 and P (2)

n /P (1)
n ∝ [Ca2+] (Zucker & Regehr, 2002; Felmy et al., 2003).

A.3 Simulation of the Learning Rule. For the simulations of the learn-
ing rules for a and p from equations 2.9 and 2.10, we used a learning rate
of η = 2/P . Here the synaptic parameters were initialized at an = 0.5 and
pn = 0.25. Learning curves Nlearn(α) are obtained by averaging over the
heuristically defined number of 200/α trials, which takes into account that
for low α, fluctuations have a larger effect than for high α, where the number
Nlearn(α) of learning epochs increases more steeply.
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Köhler, H., & Widmaier, D. (1991). Sign-constrained linear learning and diluting in
neural networks. J. Phys. A: Math. Gen., 24, L495–L502.
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