82 research outputs found

    Interferon-γ increases neuronal death in response to amyloid-β(1-42)

    Get PDF
    BACKGROUND: Alzheimer's disease is a neurodegenerative disorder characterized by a progressive cognitive impairment, the consequence of neuronal dysfunction and ultimately the death of neurons. The amyloid hypothesis proposes that neuronal damage results from the accumulation of insoluble, hydrophobic, fibrillar peptides such as amyloid-β(1-42). These peptides activate enzymes resulting in a cascade of second messengers including prostaglandins and platelet-activating factor. Apoptosis of neurons is thought to follow as a consequence of the uncontrolled release of second messengers. Biochemical, histopathological and genetic studies suggest that pro-inflammatory cytokines play a role in neurodegeneration during Alzheimer's disease. In the current study we examined the effects of interferon (IFN)-γ, tumour necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 on neurons. METHODS: Primary murine cortical or cerebellar neurons, or human SH-SY5Y neuroblastoma cells, were grown in vitro. Neurons were treated with cytokines prior to incubation with different neuronal insults. Cell survival, caspase-3 activity (a measure of apoptosis) and prostaglandin production were measured. Immunoblots were used to determine the effects of cytokines on the levels of cytoplasmic phospholipase A(2 )or phospholipase C γ-1. RESULTS: While none of the cytokines tested were directly neurotoxic, pre-treatment with IFN-γ sensitised neurons to the toxic effects of amyloid-β(1-42 )or HuPrP82-146 (a neurotoxic peptide found in prion diseases). The effects of IFN-γ were seen on cortical and cerebellar neurons, and on SH-SY5Y neuroblastoma cells. However, pre-treatment with IFN-γ did not affect the sensitivity to neurons treated with staurosporine or hydrogen peroxide. Pre-treatment with IFN-γ increased the levels of cytoplasmic phospholipase A(2 )in SH-SY5Y cells and increased prostaglandin E(2 )production in response to amyloid-β(1-42). CONCLUSION: Treatment of neuronal cells with IFN-γ increased neuronal death in response to amyloid-β(1-42 )or HuPrP82-146. IFN-γ increased the levels of cytoplasmic phospholipase A(2 )in cultured neuronal cells and increased expression of cytoplasmic phospholipase A(2 )was associated with increased production of prostaglandin E(2 )in response to amyloid-β(1-42 )or HuPrP82-146. Such observations suggest that IFN-γ produced within the brain may increase neuronal loss in Alzheimer's disease

    ‘Should I stay or should I go?’:exploring leadership-as-practice in the middle management role

    Get PDF
    This article explores dilemmas in middle manager work through the perspective of leadership-as-practice. An autoethnographic account is outlined of how a dilemma is addressed by a middle manager. The account shows how a dilemma faced by a middle manager needs to be understood as situated within the flow of activity that is itself nested in a context of roles and relationships as well as the strategic context. The authors show how the outcome of the dilemma became accommodated within the emergent practice in the organisation with no sense of recognition of the dilemma’s impact. The notion of middle manager agency within leadership-as-practice is explored through aspects of moral disengagement. The article problematizes two aspects: firstly, that normative ethical theorizing that has been unable to cater for the complexity of middle manager work seen through the practice lens; second, that traditional notions of leadership as ’leader’ appears absent from the narrative, yet seen through the lens of leadership-as-practice, with attention to context, agency, activity and outcomes, a very different perspective can be seen. Finally, the article gives insight and structure to researching leadership-as-practice

    How Job Sharing Can Lead to More Women Achieving Senior Leadership Roles in Higher Education:A UK Study

    Get PDF
    This article explores the opportunity that job sharing offers as a way of encouraging more women into senior management roles in the higher education sector. There is a scarcity of female leadership representation in the higher education context, in particular a lack of female leadership pipeline. The article examines the underlying influences that limit the representation of women in leadership roles. To address these contextual limitations the process of job sharing is offered as a possible solution for harnessing the skills and talents of women in leadership positions in higher education and enabling the development of a leadership pipeline. To illustrate how such job sharing could occur the article provides a detailed vignette of a job share between two senior women leaders within a single UK university context and the positive impact this had on the organisation, the individuals and their leadership development. This article seeks to make a contribution by exploringhowleadershipjobsharingcanoccurandsetsoutsomerecommendationsfortheadoption, negotiation and establishment of job share structures in the future

    Towards quantification of protective antibody responses by passive transfer of the 1st WHO International Standard for Ebola virus antibody in a guinea pig model.

    Get PDF
    Ebola virus (EBOV) represents a major concern to global health due to the unpredictable nature of outbreaks. Infection with EBOV can cause a severe viral haemorrhagic fever with no licensed vaccine or treatment, restricting work with live EBOV to Containment/Biosafety Level 4 facilities. Whilst the magnitude of recent outbreaks has provided an impetus for vaccine and antiviral development, establishing the efficacy of candidate vaccine materials relies on EBOV challenge models and advanced human trials should outbreaks occur and where logistics and funding allow. To address these hurdles in vaccine development, we investigated whether a recently established serological reference standard, the 1st WHO International Standard for Ebola virus antibody, could be used to provide a quantifiable correlate of immune protection in vivo. Dilutions of the International Standard were inoculated into naïve guinea pigs 24 h before challenge with a lethal dose of Ebola virus. Only subjects receiving the highest dose of the International Standard exhibited evidence of delayed progression. Due to it being a WHO established reagent and available globally upon request, this standard allows for effective comparisons of data between laboratories and may prove valuable to select the candidate vaccines that are most likely to confer humoral immune protection ensuring the most promising candidates progress into efficacy studies

    SARS-CoV-2 virus-like particles produced by a single recombinant Baculovirus generate Anti-S antibody and protect against variant challenge

    Get PDF
    Coronavirus Disease 2019 (COVID-19), caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has highlighted the need for the rapid generation of efficient vaccines for emerging disease. Virus-like particles, VLPs, are an established vaccine technology that produces virus-like mimics, based on expression of the structural proteins of a target virus. SARS-CoV-2 is a coronavirus where the basis of VLP formation has been shown to be the co-expression of the spike, membrane and envelope structural proteins. Here we describe the generation of SARS-CoV-2 VLPs by the co-expression of the salient structural proteins in insect cells using the established baculovirus expression system. VLPs were heterologous ~100 nm diameter enveloped particles with a distinct fringe that reacted strongly with SARS-CoV-2 convalescent sera. In a Syrian hamster challenge model, non-adjuvanted VLPs induced neutralizing antibodies to the VLP-associated Wuhan S protein and reduced virus shedding and protected against disease associated weight loss following a virulent challenge with SARS-CoV-2 (B.1.1.7 variant). Immunized animals showed reduced lung pathology and lower challenge virus replication than the non-immunized controls. Our data suggest SARS-CoV-2 VLPs offer an efficient vaccine that mitigates against virus load and prevents severe disease

    Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    Get PDF
    The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb) in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age) and 144 days (0.99) of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3) at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.This work was supported by the Biotechnology and Biological Sciences Research Council (grant numbers S18103 and BB/H01697X/1).This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pone.013611

    Passive immunisation of convalescent human anti-Zika plasma protects against challenge with New World Zika virus in cynomolgus macaques.

    Get PDF
    Zika virus (ZIKV) causes neurological complications in susceptible individuals, highlighted in the recent South American epidemic. Natural ZIKV infection elicits host responses capable of preventing subsequent re-infection, raising expectations for effective vaccination. Defining protective immune correlates will inform viral intervention strategies, particularly vaccine development. Non-human primate (NHP) species are susceptible to ZIKV and represent models for vaccine development. The protective efficacy of a human anti-ZIKV convalescent plasma pool (16/320-14) developed as a candidate reference material for a WHO International Standard was evaluated in macaques. Convalescent plasma administered to four cynomolgus macaques (Macaca fascicularis) intra-peritoneally 24 hrs prior to sub-cutaneous challenge with 103 pfu ZIKVPRVABC59 protected against detectable infection, with absence of detectable ZIKV RNA in blood and lymphoid tissues. Passively immunised anti-ZIKV immunoglobulin administered prior to time of challenge remained present only at very low levels 42 days post-challenge. Absence of de novo antibody responses in passively immunised macaques indicate sterilising immunity compared with naïve challenge controls that exhibited active ZIKV-specific IgM and IgG responses post-challenge. Demonstration that the presence of convalescent anti-ZIKV at levels of 400 IU/mL neutralising antibody protects against virus challenge provides a scientific framework for development of anti-ZIKV vaccines and facilitates regulatory approval

    Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation.

    Get PDF
    A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.This work was supported by DFG Excellence Cluster Inflammation at Interfaces; the SFB877 B9, the SFB 1182 C2 project, and the BMBF IHEC DEEP project TP2.3 and 5.2 (to P.R.); the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007- 2013)/ERC grant agreement 260961 (to A.K.); the National Institute for Health Research Cambridge Biomedical Research Centre, ERC CoG GA 648889, and WTIA 106260-Z-14-Z (to A.K.); NIH DK53056, DK44319, and DK088199 (to R.S.B.); and the Fondation pour la Recherche Medicale (to M.C.).This is the final version of the article. It first appeared from Cell/Elsevier via http://dx.doi.org/10.1016/j.celrep.2016.07.05

    C13orf31 (FAMIN) is a central regulator of immunometabolic function.

    Get PDF
    Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.Supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 260961, the Wellcome Trust (investigator award 106260/Z/14/Z; a PhD fellowship for clinicians; and a Career Re-Entry Fellowship), the Wellcome Trust Sanger Institute, the US National Institutes of Health (5U420D011174 and 5U54HG006348), the Biotechnology and Biological Sciences Research Council, the National Institute for Health Research Cambridge Biomedical Research Centre, the European Crohn’s and Colitis Organisation and the Swedish Medical Research Council and the Olle Engkvist foundation.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ni.353
    • …
    corecore