16 research outputs found

    Quantum Theory of Noncommutative Fields

    Full text link
    Generalizing the noncommutative harmonic oscillator construction, we propose a new extension of quantum field theory based on the concept of "noncommutative fields". Our description permits to break the usual particle-antiparticle degeneracy at the dispersion relation level and introduces naturally an ultraviolet and an infrared cutoff. Phenomenological bounds for these new energy scales are given.Comment: LaTeX file, JHEP3.cls, subequations.sty; 12 pages, no figures. Final version published in JHEP with some references adde

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis

    No full text
    Carbohydrate-induced laminitis in horses is characterized by marked changes in the composition of the hindgut microbiota, from a predominantly Gram-negative population to one dominated by Gram-positive bacteria. The objective of this study was to monitor changes in the relative abundance of selected hindgut bacteria that have previously been implicated in the pathophysiology of equine laminitis using fluorescence in situ hybridization (FISH). Caecal cannulae were surgically implanted in five Standardbred horses and laminitis induced by oral administration of a bolus dose of oligofructose. Caecal fluid and faecal specimens were collected over a 48 h period at 2 to 4 h intervals post-oligofructose administration and subjected to FISH using probes specific for nine bacterial groups to determine changes in their relative abundance compared with total bacteria hybridizing to the generic EUBMIX probe. Additionally, hoof biopsies were taken over the course of the experiment at 6 h intervals and evaluated for histopathological changes consistent with laminitis, allowing changes in hindgut microbiota to be correlated with the onset of lesions in the foot. Of the microorganisms specifically targeted, streptococci of the Streptococcus bovis/equinus complex were the only bacteria that consistently proliferated in both caecal fluid and faeces immediately before the onset of histological signs of laminitis. Furthermore, lactobacilli, Enterobacteriaceae, Allisonella histaminiformans, enterococci, Bacteroides fragilis, Mitsuokella jalaludinii and Clostridium difficile did not establish significant populations in the hindgut before the onset of equine laminitis.Gabriel J. Milinovich, Darren J. Trott, Paul C. Burrell, Emma L. Croser, Rafat A. M. Al Jassim, John M. Morton, Andrew W. van Eps and Christopher C. Pollit

    Changes in equine hindgut bacterial populations during oligofructose-induced laminitis

    No full text
    In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24–32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.G. J. Milinovich, D. J. Trott, P. C. Burrell, A. W. van Eps, M. B. Thoefner, L. L. Blackall, R. A. M. Al Jassim, J. M. Morton and C. C. Pollit

    Disparity based on sex: Is gender-specific treatment warranted?

    No full text
    corecore