38 research outputs found

    Labelled Graph Rewriting Meets Social Networks

    Get PDF
    International audienceThe intense development of computing techniques and the increasing volumes of produced data raise many modelling and analysis challenges. There is a need to represent and analyse information that is: complex –due to the presence of massive and highly heterogeneous data–, dynamic –due to interactions, time, external and internal evolutions–, connected and distributed in networks. We argue in this work that relevant concepts to address these challenges are provided by three ingredients: labelled graphs to represent networks of data or objects; rewrite rules to deal with concurrent local transformations; strategies to express control versus autonomy and to focus on points of interests. To illustrate the use of these concepts, we choose to focus our interest on social networks analysis, and more precisely in this paper on random network generation. Labelled graph strategic rewriting provides a formalism in which different models can be generated and compared. Conversely, the study of social networks, with their size and complexity, stimulates the search for structure and efficiency in graph rewriting. It also motivated the design of new or more general kinds of graphs, rules and strategies (for instance, to define positions in graphs), which are illustrated here. This opens the way to further theoretical and practical questions for the rewriting community

    Pb(II) Induces Scramblase Activation and Ceramide-Domain Generation in Red Blood Cells

    Get PDF
    The mechanisms of Pb(II) toxicity have been studied in human red blood cells using confocal microscopy, immunolabeling, fluorescence-activated cell sorting and atomic force microscopy. The process follows a sequence of events, starting with calcium entry, followed by potassium release, morphological change, generation of ceramide, lipid flip-flop and finally cell lysis. Clotrimazole blocks potassium channels and the whole process is inhibited. Immunolabeling reveals the generation of ceramide-enriched domains linked to a cell morphological change, while the use of a neutral sphingomyelinase inhibitor greatly delays the process after the morphological change, and lipid flip-flop is significantly reduced. These facts point to three major checkpoints in the process: first the upstream exchange of calcium and potassium, then ceramide domain formation, and finally the downstream scramblase activation necessary for cell lysis. In addition, partial non-cytotoxic cholesterol depletion of red blood cells accelerates the process as the morphological change occurs faster. Cholesterol could have a role in modulating the properties of the ceramide-enriched domains. This work is relevant in the context of cell death, heavy metal toxicity and sphingolipid signaling.AGA was a predoctoral student supported by the Basque Government and later by the University of the Basque Country (UPV/EHU). This work was also supported in part by grants from the Spanish Government (FEDER/MINECO BFU 2015-66306-P to F.M.G. and A.A.) and the Basque Government (IT849-13 to F.M.G. and IT838-13 to A.A.), and by the Swiss National Science Foundation

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore