192 research outputs found

    Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration

    Get PDF
    Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by π-stacking

    Novel conducting polymer current limiting devices for low cost surge protection applications

    Get PDF
    We report on the development of novel intrinsic conducting polymer two terminal surge protection devices. These resettable current limiting devices consist of polyaniline nanofibres doped with methane sulphonic acid electrochemically deposited between two 55 μm spaced gold electrodes. At normal applied voltages, the low resistance devices act as passive circuit elements, not affecting the current flow. However during a current surge the devices switch from ohmic to non-ohmic behaviour, limiting current through the device. After the current surge has passed, the devices reset back to their original state. Our studies show that a partial de-doping/re-doping process caused by the rapid diffusion of moisture out of or into the polymer film during joule heating/cooling is the underlying mechanism responsible

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits

    Statistical analysis of spin switching in coupled spin-crossover molecules

    Get PDF
    We study the switching behavior of two spin-crossover molecules residing in a nanojunction device consisting of two closely spaced gold electrodes. The spin states are monitored through a real-time measurement of the resistance of the junction. A statistical analysis of the resistance values, the occupation probabilities, and the lifetimes of the respective spin states shows that the two spin-crossover molecules are coupled to each other. We extract the parameters for a minimal model describing the two coupled spin-crossover molecules. Finally, we use the time dependence of factorial cumulants to study the impact of interactions between the two spin-crossover molecules on the switching dynamics

    Large dopant dependence of the current limiting properties of intrinsic conducting polymer surge protection devices

    Get PDF
    New two terminal surge protection devices based on intrinsic conducting polymers are demonstrated to be strongly affected by the dopant molecule type. Thermogravimetric analysis combined with current–voltage studies show a causal link between the dopant molecule, moisture content and the current limiting capability of the devices. Polyaniline thin-films with high moisture content produce devices with current saturation and foldback effects at high applied voltages while low moisture content films exhibit no current rectification and instead demonstrate decreasing resistivity with increasing voltage. Polyaniline doped with sulfuric acid (H2SO4) exhibited the largest moisture content and surge protection devices built with this material produced for the first time negative differential resistance under ambient conditions. A further improvement was made upon this through surface engineering of the interface between the polymer and electrodes using self-assembled monolayers

    Super hydrophobic SAM modified electrodes for enhanced current limiting properties in intrinsic conducting polymer surge protection devices

    Get PDF
    Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au−polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effec

    The BRAIN-Q, a tool for assessing self-reported sport-related concussions for epidemiological studies

    Get PDF
    Objectives: The BRAIN-Q is a tool aimed at maximising the accuracy, and minimising measurement error, for retrospectively assessing concussions. This paper reports agreement of the BRAIN-Q tool when compared to extant questionnaire questions, and reproducibility when compared with its telephonic version (tBRAIN-Q). Method: The BRAIN-Q entails a 3-stage process: defining concussion, creating a visual timeline with life events, and establishing detailed characteristics for each reported concussion. It was designed to be administered in-person by trained personnel, and was used in the BRAIN Study. Its performance was compared with the MSK Study which previously collected a few questions in a broader self-administered questionnaire; and with the tBRAIN-Q Recall, its telephonic version. Results: 101 participants were included; of these, nine were re-assessed with the tBRAIN-Q. Compared to the BRAIN-Q, the agreement with the MSK-Q for rugby-related concussion was 86.7% (kappa 0.6). Rugby-related concussion with loss of consciousness showed lower agreement (82.0% (kappa 0.6)). The comparison between the BRAIN-Q and the tBRAIN-Q showed a good reproducibility. Conclusions: The BRAIN-Q is a relatively easy tool to administer in face-to-face assessments, it showed an optimal reproducibility, it includes a well-established definition of concussion, and is used to collect detailed information on each concussion allowing for a number of subgroup analyses (e.g. by severity, by age, by context). The BRAIN-Q is easily adaptable to other sporting setting
    • …
    corecore