7 research outputs found

    Next-generation plasmids for transgenesis in zebrafish and beyond

    Get PDF
    Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse beta-globin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein mCerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models

    Next-generation plasmids for transgenesis in zebrafish and beyond

    Get PDF
    Transgenesis is an essential technique for any genetic model. Tol2-based transgenesis paired with Gateway-compatible vector collections has transformed zebrafish transgenesis with an accessible, modular system. Here, we established several next-generation transgenesis tools for zebrafish and other species to expand and enhance transgenic applications. To facilitate gene-regulatory element testing, we generated Gateway middle entry vectors harboring the small mouse betaglobin minimal promoter coupled to several fluorophores, CreERT2, and Gal4. To extend the color spectrum for transgenic applications, we established middle entry vectors encoding the bright, blue-fluorescent protein Cerulean and mApple as an alternative red fluorophore. We present a series of p2A peptide-based 3' vectors with different fluorophores and subcellular localizations to co-label cells expressing proteins of interest. Lastly, we established Tol2 destination vectors carrying the zebrafish exorh promoter driving different fluorophores as a pineal gland-specific transgenesis marker active prior to hatching and through adulthood. exorh-based reporters and transgenesis markers also drive specific pineal gland expression in the eye-less cavefish (Astyanax). Together, our vectors provide versatile reagents for transgenesis applications in zebrafish, cavefish, and other models

    Investigating the role of slit signaling during diencephalon development in zebrafish

    No full text
    During early embryonic development, neuronal projection of axons across the midline of the forebrain connect the two halves of the nervous system by forming structures called commissures. How do pioneering axons know where to cross the midline to form such uniform structures like commissures? Zebrafish postoptic commissure formation has been shown to require a combination of signaling gradients and potential interactions with a “glial bridge” (Barresi et al. 2005). Midline crossing of commissural axons and glial bridge positioning relies on the appropriate expression of a set of repellent guidance cues, Slits, and their associated receptors, Robos (Barresi et al. 2005; Rasband, Hardy, and Chien, 2003). Expression of slit2/3 is thought to condense the POC by providing surround repulsion (Barresi et al. 2005; Long et al. 2004; Rasband, Hardy, and Chien, 2003). We have found that contrary to the published effects of slit2/3, knockdown of slit1a suggests that slit1a may act as a positive guidance cue for commissural axons, particularly due to its expression overlapping with the region of axonal midline crossing and the glial bridge. Utilizing a new computational methodology called ∆SCOPE (Schwartz, Schnabl et al., 2019), we were able to quantify the complex commissural phenotypes in slit1a overexpressed wildtype forebrains and in the achiasmatic yot mutant. To investigate the effects of the loss of slit1a, we have generated an early stop slit1a knockout line, which does not exhibit a commissural phenotype potentially due to compensation via the upregulation of other genes triggered by the production of mutant mRNA (Stanier et al., 2019). To avoid transcriptional adaptation in newly designed mutants, we have generated ‘promoterless’ slit mutants by excising all of the upstream transcriptional elements of the slit genes using CRISPR-­‐Cas9 mediated mutagenesis. ∆SCOPE analysis of the promoterless slit1a mutant and slit1a overexpression phenotypes supports a novel, non-­‐canonical positive role for Slit1a in promoting commissural midline crossing in the zebrafish diencephalon

    From Stripes to a Beating Heart: Early Cardiac Development in Zebrafish

    No full text
    The heart is the first functional organ to form during vertebrate development. Congenital heart defects are the most common type of human birth defect, many originating as anomalies in early heart development. The zebrafish model provides an accessible vertebrate system to study early heart morphogenesis and to gain new insights into the mechanisms of congenital disease. Although composed of only two chambers compared with the four-chambered mammalian heart, the zebrafish heart integrates the core processes and cellular lineages central to cardiac development across vertebrates. The rapid, translucent development of zebrafish is amenable to in vivo imaging and genetic lineage tracing techniques, providing versatile tools to study heart field migration and myocardial progenitor addition and differentiation. Combining transgenic reporters with rapid genome engineering via CRISPR-Cas9 allows for functional testing of candidate genes associated with congenital heart defects and the discovery of molecular causes leading to observed phenotypes. Here, we summarize key insights gained through zebrafish studies into the early patterning of uncommitted lateral plate mesoderm into cardiac progenitors and their regulation. We review the central genetic mechanisms, available tools, and approaches for modeling congenital heart anomalies in the zebrafish as a representative vertebrate model
    corecore