29 research outputs found

    Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Get PDF
    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2, 3, 4, 5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5, 6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2, 3, 4, 5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel

    A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2

    Get PDF
    The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Cav1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated

    Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly: Biochemical Demonstration and Molecular Analysis

    Get PDF
    The nuclear pore complex (NPC) is characterized by a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel, within which the nuclear pore is built, has little evolutionary precedent. In this report we demonstrate and map the inner/outer nuclear membrane fusion in NPC assembly

    The plant LINC complex at the nuclear envelope

    Get PDF
    Significant advances in understanding the plant nuclear envelope have been made over the past few years; indeed, knowledge of the protein network at the nuclear envelope is rapidly growing. One such network, the linker of nucleoskeleton and cytoskeleton (LINC) complex, is known in animals to connect chromatin to the cytoskeleton through the nuclear envelope. The LINC complex is made of Sad1/Unc84 (SUN) and Klarsicht/Anc1/Syne1 homology (KASH) proteins which have been recently characterized in plants. SUN proteins are located within the inner nuclear membrane, while the KASH proteins are included into the outer nuclear membrane. SUN and KASH domains interact and bridge the two nuclear membranes. In Arabidopsis, KASH proteins also interact with the tryptophan-proline-proline (WPP) domain-interacting tail-anchored protein 1 (WIT1), associated with the nuclear pore complex and with myosin XI-i which directly interacts with the actin cytoskeleton. Although evidence for a plant LINC complex connecting the nucleus to the cytoskeleton is growing, its interaction with chromatin is still unknown, but knowledge gained from animal models strongly suggests its existence in plants. Possible functions of the plant LINC complex in cell division, nuclear shape, and chromatin organization are discussed

    Permeability of single nuclear pores.

    Get PDF
    In this first application of optical single transporter recording (OSTR), a recently established technique for optically monitoring the activity of single transporters in membrane patches (Tschödrich-Rotter and Peters. 1998. J. Microsc. 192:114-125), the passive permeability of the nuclear pore complex (NPC) was measured for a homologous series of hydrophilic probe molecules. Nuclei were isolated from Xenopus oocytes and firmly attached to filters containing small cylindrical pores. Transport through membrane patches spanning filter pores was measured by scanning microphotolysis. Thus the permeability coefficients of single NPCs were determined for fluorescently labeled dextrans of approximately 4, 10, and 20 kDa. Dextrans of >/=40 kDa could not permeate the NPC. The data were consistent with a model in which the NPC contains a single diffusion channel. By application of established theories for the restricted diffusion through small pores, the diffusion channel was approximated as a cylinder with a radius of 4.4-6.1 nm (mean 5. 35 nm). Because the transport rate constant of the single NPC was known, the equivalent length of the channel could be also determined and was found to be 40-50 nm (mean 44.5 nm). The symmetry of the NPC implies that a singular component such as the diffusion channel is located at the center of the NPC. Therefore a common transport pathway apparently mediates both passive and signal-dependent transport. To test this hypothesis, measurements of signal-dependent transport and of the mutual effects signal-dependent and passive transport may exert on each other are in progress

    A novel high throughput screening approach targeting the vitamin B6 biosynthesis in Plasmodium falciparum

    No full text

    A high-content small molecule screen identifies novel inducers of definitive endoderm

    No full text
    Objectives Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can generate any given cell type in the human body. One challenge for cell-replacement therapy is the efficient differentiation and expansion of large quantities of progenitor cells from pluripotent stem cells produced under good manufacturing practice (GMP). FOXA2 and SOX17 double positive definitive endoderm (DE) progenitor cells can give rise to all endoderm-derived cell types in the thymus, thyroid, lung, pancreas, liver, and gastrointestinal tract. FOXA2 is a pioneer transcription factor in DE differentiation that is also expressed and functionally required during pancreas development and islet cell homeostasis. Current differentiation protocols can successfully generate endoderm; however, generation of mature glucose-sensitive and insulin-secreting β-cells is still a challenge. As a result, it is of utmost importance to screen for small molecules that can improve DE and islet cell differentiation for cell-replacement therapy for diabetic patients. Methods The aim of this study was to identify and validate small molecules that can induce DE differentiation and further enhance pancreatic progenitor differentiation. Therefore, we developed a large scale, high-content screen for testing a chemical library of 23,406 small molecules to identify compounds that induce FoxA2 in mouse embryonic stem cells (mESCs). Results Based on our high-content screen algorithm, we selected 84 compounds that directed differentiation of mESCs towards the FoxA2 lineage. Strikingly, we identified ROCK inhibition (ROCKi) as a novel mechanism of endoderm induction in mESCs and hESCs. DE induced by the ROCK inhibitor Fasudil efficiently gives rise to PDX1+ pancreatic progenitors from hESCs. Conclusion Taken together, DE induction by ROCKi can simplify and improve current endoderm and pancreatic differentiation protocols towards a GMP-grade cell product for β-cell replacement

    Utilizing Regulatory Networks for Pluripotency Assessment in Stem Cells

    No full text
    Pluripotency is a term in cell biology describing a unique state present in distinct stem cell lines, which were either established from the inner cell mass of the mammalian embryo or derived from somatic cells that have been reprogrammed to induced pluripotent stem cells. Pluripotent stem cells are continuously self-renewing, and their differentiation capacity enables them to develop into all derivatives of the three germ layers of a gastrulating embryo (endoderm, ectoderm, mesoderm). Both human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC) are virtually indistinguishable, at least based on their global RNA expression patterns. Yet, after these in vitro cell cultures have been generated, the cell lines’ pluripotent properties may change considerably on the genetic and/or epigenetic level as a consequence of long-term propagation. Among other unphysiological changes, cell lines might acquire aneuploidies, loose physiological imprinting marks, or develop differentiation biases favoring one cell lineage over the other. As a result, stem cell researchers have to continuously monitor each stem cell line’s integrity, transcriptional profile, and functional properties. Regulatory transcription factors, protein-protein interactions, and signaling networks govern the pluripotent state. As a consequence, emerging small- and large-scale perturbations to these gene regulatory networks mediate the outlined unfavorable changes to the pluripotent phenotype. Here, we describe a reliable bioinformatic framework called PluriTest for confirmation and assessment of pluripotency as an animal-free, fast, and inexpensive way based on genome-wide transcriptional RNA profiles from microarrays. Additionally, we discuss future developments using RNA expression profiling for pluripotency assessment

    Identification of approved drugs as potent inhibitors of pregnane X receptor activation with differential receptor interaction profiles

    No full text
    Activation of pregnane X receptor (PXR) results in the induction of first-pass metabolism and drug efflux. Hereby, PXR may cause adverse drug reactions or therapeutic failure of drugs. PXR inhibition is thus an attractive option to minimise adverse effects or to improve therapeutic efficiencies; however, only a limited number of antagonists have been identified so far. We performed a cell-based high-throughput screen to identify PXR antagonists, using a library of approved and investigational drugs. Two approved drugs, pimecrolimus and pazopanib, emerged as novel potent antagonists of PXR activation, with IC50 values of 1.2 and 4.1 µM, respectively. We further characterised these with respect to receptor specificity, assembly of the PXR ligand-binding domain (LBD) and interactions with co-factors. In vitro and in silico assays were carried out to identify the site(s) of interaction with the PXR LBD. Primary human hepatocytes were used to investigate antagonism of the induction of endogenous PXR target genes. Pimecrolimus and pazopanib did not affect the transcriptional activity of other nuclear receptors. Both induced the release of co-repressor from PXR and likewise interfered with agonist-induced recruitment of co-activator. Cumulative evidence from cellular and in vitro assays, as well as molecular docking, suggested additional or exclusive binding outside the PXR ligand-binding pocket for both. The compounds differentially antagonised the induction of PXR-regulated genes by rifampicin in primary human hepatocytes. In conclusion, we here have identified two approved drugs as novel potent PXR inhibitors with differential receptor interaction profiles and gene selectivity in primary human hepatocytes

    Boswellic acids immunomodulate T cell populations in relapsing-remitting multiple sclerosis in the SABA phase IIa clinical trial

    No full text
    Background: Boswellic Acids (BAs), the main biologically active compound of frankincense (Boswellia ssp.), are orally available and have exhibited a safe and favourable side effect profile for the treatment of relapsing-remitting Multiple Sclerosis (RR-MS) in an open-label, two-center, baseline-to-treatment phase IIa trial. Effects on the primary MRI outcome and secondary clinical outcome parameters strongly suggest a positive influence on disease activity in RR-MS patients. BAs are known to exhibit anti-inflammatory activities, however, their immunological effect/s in RR-MS patients are not fully understood. Methods: In parallel to the phase IIa study with a standardized frankincense extract (produced by Alpinia Laudanum, Switzerland, and containing BAs as active ingredient) we performed an immunological substudy in n = 28 BA-treated RR-MS patients, who completed the study. Multicolour flow cytometric analysis was performed longitudinally ex vivo in n = 26 patients at three time points before, during early and during late treatment, respectively. Cytokine levels for interleukin(IL)-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, tumor necrosis factor-alpha, interferon-gamma and transforming growth factor-beta in serum were measured at the same time points in n = 28 patients by highly sensitive single or multiplex analysis (MesoScale; Singulex) after all patients had completed the study. Results: We observed distinct alterations in CD3+ T cell subpopulations in our BA-treated patient cohort: While in the CD4+ T cell subset CTLA-4 expression and the percentage of CD4+CD25high Foxp3+ T cells increased significantly during treatment (p < 0.01), we found a significant decrease in the percentage of IL17-producing CD8+T cells coinciding with an increase in IL10-producing CD8+ T cells (p < 0.01). The analysis of other leucocyte and lymphocyte subpopulations, i.e. monocytes, B cells, natural killer cells and dendritic cells showed no alterations before and after BA-treatment. White blood cell counts and lymphocyte counts in general remained unaltered throughout the whole study. In regard to cytokine levels in serum, we observed significant decreases in IL-17A, GM-CSF and IL-2 during BA-treatment (p < 0.05). Conclusions: Treatment with boswellic acids in a phase IIa clinical trial leads to immunomodulatory effects on T cell subsets consistent with the inhibition of inflammatory disease activity as shown by MRI and clinical outcomes
    corecore