491 research outputs found

    Utah and Nevada Wood Industry Directory

    Get PDF

    Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations

    Full text link
    The total energies and the spin states for atoms and their first ions with Z = 1-86 are calculated within the the local spin-density approximation (LSDA) and the generalized-gradient approximation (GGA) to the exchange-correlation (xc) energy in density-functional theory. Atoms and ions for which the ground-state density is not pure-state v-representable, are treated as ensemble v- representable with fractional occupations of the Kohn-Sham system. A newly developed algorithm which searches over ensemble v-representable densities [E. Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations. It is found that for many atoms the ionization energies obtained with the GGA are only modestly improved with respect to experimental data, as compared to the LSDA. However, even in those groups of atoms where the improvement is systematic, there remains a non-negligible difference with respect to the experiment. The ab-initio electronic configuration in the Kohn-Sham reference system does not always equal the configuration obtained from the spectroscopic term within the independent-electron approximation. It was shown that use of the latter configuration can prevent the energy-minimization process from converging to the global minimum, e.g. in lanthanides. The spin values calculated ab-initio fit the experiment for most atoms and are almost unaffected by the choice of the xc-functional. Among the systems with incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the result is found to be stable with respect to small variations in the xc-approximation. These findings suggest a necessity for a significant modification of the exchange-correlation functional, probably of a non-local nature, to accurately describe such systems. PACS numbers: 31.15.

    The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra

    Full text link
    We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright gravitationally lensed galaxies at redshifts of 1.68<<z<<3.6, obtained with the MagE spectrograph on the Magellan telescopes. The spectra cover the observed-frame wavelength range 3200<λo<82803200 < \lambda_o < 8280 \AA ; the average spectral resolving power is R=3300. The median spectrum has a signal-to-noise ratio of SNR=21SNR=21 per resolution element at 5000 \AA . As such, the MEGaSaURA spectra have superior signal-to-noise-ratio and wavelength coverage compared to what COS/HST provides for starburst galaxies in the local universe. This paper describes the sample, the observations, and the data reduction. We compare the measured redshifts for the stars, the ionized gas as traced by nebular lines, and the neutral gas as traced by absorption lines; we find the expected bulk outflow of the neutral gas, and no systemic offset between the redshifts measured from nebular lines and the redshifts measured from the stellar continuum. We provide the MEGaSaURA spectra to the astronomical community through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal publication. v2 addresses minor comments from refere

    Compton Echoes from Gamma-ray Bursts

    Get PDF
    Recent observations of gamma-ray bursts (GRBs) have provided growing evidence for collimated outflows and emission, and strengthened the connection between GRBs and supernovae. If massive stars are the progenitors of GRBs, the hard photon pulse will propagate in the pre-burst, dense environment. Circumstellar material will Compton scatter the prompt GRB radiation and give rise to a reflection echo. We calculate luminosities, spectra, and light curves of such Compton echoes in a variety of emission geometries and ambient gas distributions, and show that the delayed hard X-ray flash from a pulse propagating into a red supergiant wind could be detectable by Swift out to z~0.2. Independently of the gamma-ray spectrum of the prompt burst, reflection echoes will typically show a high-energy cutoff between m_ec^2/2 and m_ec^2 because of Compton downscattering. At fixed burst energy per steradian, the luminosity of the reflected echo is proportional to the beaming solid angle, Omega_b, of the prompt pulse, while the number of bright echoes detectable in the sky above a fixed limiting flux increases as Omega_b^{1/2}, i.e. it is smaller in the case of more collimated jets. The lack of an X-ray echo at one month delay from the explosion poses severe constraints on the possible existence of a lateral GRB jet in SN 1987A. The late r-band afterglow observed in GRB990123 is fainter than the optical echo expected in a dense red supergiant environment from a isotropic prompt optical flash. Significant MeV delayed emission may be produced through the bulk Compton (or Compton drag) effect resulting from the interaction of the decelerating fireball with the scattered X-ray radiation.Comment: LaTeX, 18 pages, 4 figures, revised version accepted for publication in the Ap

    The Evolution of Early-Type Galaxies in Distant Clusters III.: M/L_V Ratios in the z=0.33 Cluster CL1358+62

    Full text link
    Keck spectroscopy and Hubble Space Telescope WFPC2 imaging over a 1.5x1.5 Mpc field of CL1358+62 at z=0.33 are used to study the Fundamental Plane of galaxies based on a new, large sample of 53 galaxies. First, we have constructed the Fundamental Plane for the 30 E and S0 galaxies and find that it has the following shape: r_e = sigma**(1.31+-0.13) * _e**(-0.86+-0.10), similar to that found locally. The 1-sigma intrinsic scatter about this plane is 14% in M/L(V), comparable to that observed in Coma. We conclude that these E and S0 galaxies are structurally mature and homogeneous, like those observed in nearby clusters. The M/L(V) ratios of these early-type galaxies are offset from the Coma Fundamental Plane by delta log M/L(V) = -0.13+- 0.03 (q0=0.1), indicative of mild luminosity evolution. This evolution suggests a formation epoch for the stars of z > 1. We have also analyzed the M/L(V) ratios of galaxies of type S0/a and later. These early-type spirals follow a different plane from the E and S0 galaxies, with a scatter that is twice as large as the scatter for the E/S0s. The difference in the tilt between the plane of the spirals and the plane of the E/S0s is shown to be due to a systematic correlation of velocity dispersion with residual from the plane of the early-type galaxies. These residuals also correlate with the residuals from the Color-Magnitude relation. Thus for spirals in clusters, we see a systematic variation in the luminosity-weighted mean properties of the stellar populations with central velocity dispersion. If this is a relative age trend, then luminosity-weighted age is positively correlated with dispersion. [abridged version]Comment: 18 pages, 8 figures; revised version, accepted by ApJ on 13 August 199

    Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low Mass White Dwarfs

    Full text link
    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H] ~ 0.4) open clusters in our Galaxy, and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster, using Keck/LRIS spectra, suggests that most of these stars are undermassive, = 0.43 +/- 0.06 Msun, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash, and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen core stars and therefore the corrected white dwarf cooling age is in fact ~7 Gyr, consistent with the well measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies.Comment: 15 pages, 9 figures, 2 tables. Accepted for publication in Astrophys. J. Very minor changes from first versio

    The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

    Full text link
    We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.Comment: 5 pages in emulate ApJ format with three color figures. Accepted for publication in ApJ Letters, v642n2. Updated to correct grammatical and typographic errors found by the journa

    The Host Galaxy of GRB 990123

    Get PDF
    We present deep images of the field of gamma-ray burst (GRB) 990123 obtained in a broad-band UV/visible bandpass with the Hubble Space Telescope, and deep near-infrared images obtained with the Keck-I 10-m telescope. Both the HST and Keck images show that the optical transient (OT) is clearly offset by 0.6 arcsec from an extended object, presumably the host galaxy. This galaxy is the most likely source of the metallic-line absorption at z = 1.6004 seen in the spectrum of the OT. With magnitudes V_{C} ~ 24.6 +/- 0.2 and K = 21.65 +/- 0.30 mag this corresponds to an L ~ 0.7 L_* galaxy, assuming that it is located at z = 1.6. The estimated unobscured star formation rate is SFR ~ 6 M_sun/yr, which is not unusually high for normal galaxies at comparable redshifts. The strength of the observed metallic absorption lines is suggestive of a relatively high metallicity of the gas, and thus of a chemically evolved system which may be associated with a massive galaxy. It is also indicative of a high column density of the gas, typical of damped Ly-alpha systems at high redshifts. We conclude that this is the host galaxy of GRB 990123. No other obvious galaxies are detected within the same projected radius from the OT. There is thus no evidence for strong gravitational lensing magnification of this burst, and some alternative explanation for its remarkable energetics may be required. The observed offset of the OT from the center of its apparent host galaxy, 5.5 +/- 0.9 proper kpc (projected) in the galaxy's rest-frame, both refutes the possibility that GRBs are related to galactic nuclear activity and supports models of GRBs which involve the death and/or merger of massive stars. Further, the HST image suggests an intimate connection of GRB 990123 and a star-forming region.Comment: Updated references. 12 pages including 3 Postscript figures. Camera- ready reproductions of the figures can be found at http://astro.caltech.edu/~jsb/GRB/grb990123.htm

    The Color-Magnitude Relation in CL 1358+62 at z=0.33: Evidence for Significant Evolution in the S0 Population

    Get PDF
    We use a large mosaic of HST WFPC2 images to measure the colors and morphologies of 194 spectroscopically confirmed members of the rich galaxy cluster CL1358+62 at z=0.33. We study the color-magnitude (CM) relation as a function of radius in the cluster. The intrinsic scatter in the restframe B-V CM relation of the elliptical galaxies is very small: ~0.022 magnitudes. The CM relation of the ellipticals does not depend significantly on the distance from the cluster center. In contrast, the CM relation for the S0 galaxies does depend on radius: the S0s in the core follow a CM relation similar to the ellipticals, but at large radii (R>0.7Mpc) the S0s are systematically bluer and the scatter in the CM relation approximately doubles to ~0.043 magnitudes. The blueing of the S0s is significant at the 95% confidence level. These results imply that the S0 galaxies in the outer parts of the cluster have formed stars more recently than the S0s in the inner parts. A likely explanation is that clusters at z=0.33 continue to accrete galaxies and groups from the field and that infall extinguishes star formation. The apparent homogeneity of the elliptical galaxy population implies that star formation in recently accreted ellipticals was terminated well before accretion occurred. We have constructed models to explore the constraints that these observations place on the star formation history of cluster galaxies. We conclude that the population of S0s in clusters is likely to evolve as star forming galaxies are converted into passively evolving galaxies. Assuming a constant accretion rate after z=0.33, we estimate ~15% of the present day early-type galaxy population in rich clusters was accreted between z=0.33 and z=0. The ellipticals (and the brightest S0s) are probably a more stable population, at least since z=0.6.Comment: Accepted for publication in the ApJ. 20 pages, 12 figures. Full version and plates available at http://www.astro.rug.nl/~dokkum/papers.htm
    • …
    corecore