6,140 research outputs found

    Teen smoking, field cancerization, and a "critical period" hypothesis for lung cancer susceptibility.

    Get PDF
    Cigarette smoking by children and adolescents continues to be prevalent, and this fact represents a major public health problem and challenge. Epidemiologic work has previously suggested that exposure of the lung to tobacco carcinogens at an early age may be an independent risk factor for lung cancer. Recent studies at the molecular and cellular levels are consistent with this, now suggesting that early exposure enhances DNA damage and is associated with the induction of DNA alterations in specific chromosomal regions. In this paper we hypothesize that adolescence, which is known to be the period of greatest development for the lung, may constitute a "critical period" in which tobacco carcinogens can induce fields of genetic alterations that make the early smoker more susceptible to the damaging effects of continued smoking. The fact that lung development differs by sex might also contribute to apparent gender differences in lung cancer susceptibility. Because this hypothesis has important implications for health policy and tobacco control, additional resources need to be devoted to its further evaluation. Targeted intervention in adolescent smoking may yield even greater reductions in lung cancer occurrence than otherwise anticipated

    Variability in infants' functional brain network connectivity is associated with differences in affect and behavior

    Get PDF
    Variability in functional brain network connectivity has been linked to individual differences in cognitive, affective, and behavioral traits in adults. However, little is known about the developmental origins of such brain-behavior correlations. The current study examined functional brain network connectivity and its link to behavioral temperament in typically developing newborn and 1-month-old infants (M [age] = 25 days; N = 75) using functional near-infrared spectroscopy (fNIRS). Specifically, we measured long-range connectivity between cortical regions approximating fronto-parietal, default mode, and homologous-interhemispheric networks. Our results show that connectivity in these functional brain networks varies across infants and maps onto individual differences in behavioral temperament. Specifically, connectivity in the fronto-parietal network was positively associated with regulation and orienting behaviors, whereas connectivity in the default mode network showed the opposite effect on these behaviors. Our analysis also revealed a significant positive association between the homologous-interhemispheric network and infants' negative affect. The current results suggest that variability in long-range intra-hemispheric and cross-hemispheric functional connectivity between frontal, parietal, and temporal cortex is associated with individual differences in affect and behavior. These findings shed new light on the brain origins of individual differences in early-emerging behavioral traits and thus represent a viable novel approach for investigating developmental trajectories in typical and atypical neurodevelopment
    corecore