33 research outputs found

    Cone rod dystrophies

    Get PDF
    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently, there is no therapy that stops the evolution of the disease or restores the vision, and the visual prognosis is poor. Management aims at slowing down the degenerative process, treating the complications and helping patients to cope with the social and psychological impact of blindness

    A novel locus (CORD12) for autosomal dominant cone-rod dystrophy on chromosome 2q24.2-2q33.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rod-cone dystrophy, also known as retinitis pigmentosa (RP), and cone-rod dystrophy (CRD) are degenerative retinal dystrophies leading to blindness. To identify new genes responsible for these diseases, we have studied one large non consanguineous French family with autosomal dominant (ad) CRD.</p> <p>Methods</p> <p>Family members underwent detailed ophthalmological examination. Linkage analysis using microsatellite markers and a whole-genome SNP analysis with the use of Affymetrix 250 K SNP chips were performed. Five candidate genes within the candidate region were screened for mutations by direct sequencing.</p> <p>Results</p> <p>We first excluded the involvement of known adRP and adCRD genes in the family by genotyping and linkage analysis. Then, we undertook a whole-genome scan on 22 individuals in the family. The analysis revealed a 41.3-Mb locus on position 2q24.2-2q33.1. This locus was confirmed by linkage analysis with specific markers of this region. The maximum LOD score was 2.86 at θ = 0 for this locus. Five candidate genes, <it>CERKL</it>, <it>BBS5, KLHL23, NEUROD1</it>, and <it>SF3B1 </it>within this locus, were not mutated.</p> <p>Conclusion</p> <p>A novel locus for adCRD, named <it>CORD12</it>, has been mapped to chromosome 2q24.2-2q33.1 in a non consanguineous French family.</p

    Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase.

    No full text
    OBJECTIVE: To describe the clinical features of autosomal dominant cone-rod retinal dystrophy (CRD) in a British family mapping to chromosome 17p12-p13 (CORD6), with a heterozygous mutation (Glu837Asp/ Arg838Ser) of GUCY2D. DESIGN: A prospective, clinical family survey. PATIENTS: Ten affected members of a family with autosomal dominant CRD. METHODS: Full clinical examinations were undertaken. Selected affected family members underwent electrophysiologic evaluation, scotopic static perimetry, dark adaptometry, and color vision assessment. MAIN OUTCOME MEASURES: Clinical appearance and electroretinographic responses. RESULTS: Typical clinical and electroretinographic features of childhood-onset CRD were recorded. In addition, moderate myopia and pendular nystagmus were seen in affected individuals. Color vision assessment in the youngest affected individual showed no color discrimination on a tritan axis, but retention of significant red-green discrimination. Electronegative electroretinogram responses were seen on electrophysiology in the only young family member examined. CONCLUSIONS: The phenotype associated with GUCY2D CRD is clinically distinct from that associated with other dominant CRD loci. Unusual electroretinographic responses may indicate that this mutation of GUCY2D is associated with early defects in photoreceptor synaptic transmission to second-order neurons

    Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase.

    No full text
    OBJECTIVE: To describe the clinical features of autosomal dominant cone-rod retinal dystrophy (CRD) in a British family mapping to chromosome 17p12-p13 (CORD6), with a heterozygous mutation (Glu837Asp/ Arg838Ser) of GUCY2D. DESIGN: A prospective, clinical family survey. PATIENTS: Ten affected members of a family with autosomal dominant CRD. METHODS: Full clinical examinations were undertaken. Selected affected family members underwent electrophysiologic evaluation, scotopic static perimetry, dark adaptometry, and color vision assessment. MAIN OUTCOME MEASURES: Clinical appearance and electroretinographic responses. RESULTS: Typical clinical and electroretinographic features of childhood-onset CRD were recorded. In addition, moderate myopia and pendular nystagmus were seen in affected individuals. Color vision assessment in the youngest affected individual showed no color discrimination on a tritan axis, but retention of significant red-green discrimination. Electronegative electroretinogram responses were seen on electrophysiology in the only young family member examined. CONCLUSIONS: The phenotype associated with GUCY2D CRD is clinically distinct from that associated with other dominant CRD loci. Unusual electroretinographic responses may indicate that this mutation of GUCY2D is associated with early defects in photoreceptor synaptic transmission to second-order neurons
    corecore