74 research outputs found

    A new species of gall midge (Diptera: Cecidomyiidae) attacking hazels, Corylus spp. in China

    Get PDF
    Hazels, Corylus spp. (Betulaceae) are planted extensively in North and Southwest China as nut-bearing trees. Dasineura heterophylla Jiao & Bu, sp. n., a new species of gall midge that induces galls on leaves, leaf buds and bracts of young fruits of hazels in North China, is described and illustrated based on materials from Tieling, Liaoning, China. This new gall midge is univoltine and pupates in the topsoil. Larvae reduce nut production of hazels, especially in Corylus heterophylla

    Grounding Language Model with Chunking-Free In-Context Retrieval

    Full text link
    This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval. CFIC addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained. Our evaluations of CFIC on a range of open QA datasets demonstrate its superiority in retrieving relevant and accurate evidence, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems

    Enantioseparation of racemic alpha-cyclohexyl-mandelic acid across hollow fiber supported liquid membrane

    Full text link
    This paper deals with the enantioseparation of racemic alpha-cyclohexyl-mandelic acid containing copper(II) N-dodecyl-(L)-hydroxyproline (CuN2) as a chiral carrier using hollow fiber supported liquid membrane. A mathematical model of transport and enantioseparation of chiral compounds was deduced, the observed partition coefficient between the feed phase and the membrane phase, the stripping phase and the membrane phase, mass transfer resistance of boundary layer in strip phase inside the hollow fibers, boundary layer in feed phase and the diffusion in the membrane phase are taken into account in the model equations. Using the experimental results, several parameters of the proposed model have been achieved by nonlinear fitting method. It is a simply mathematical model which can be easily used to predict the concentration of the enantiomers and the separation factor of the enantioseparation process, and it can also be used to design and scale up the enantioseparation process

    Deciphering the maize gene ZmGF14–3: implications for plant height based on co-expression networks

    Get PDF
    The evolutionary analysis showed that the GF14 family was conserved, however, there was limited evidence linking GF14s to plant height. In our investigations, we discovered a co-expression relationship between ZmGF14s and functionally characterized genes linked to plant height. In the co-expression network, we identified ZmGF14-3, a gene expression exhibiting a positive correlation with plant height in three maize varieties, we postulated that this gene could be intimately linked to plant height development. Subsequently, we cloned ZmGF14-3 from the maize B73 inbred line and overexpressed it in Arabidopsis, resulting in markedly dwarfed transgenic phenotypes. Measurements of endogenous phytohormones disclosed a significant reduction in concentrations of Gibberellic Acid 7 (GA7) and Indole-3-Acetic Acid (IAA) in the overexpressed Arabidopsis, furthermore, qPCR results highlighted a pronounced decrease in the expression levels of plant height-related genes when compared to the wild type, therefore, it is plausible to posit that ZmGF14-3 plays a pivotal role in regulating the growth and development of maize through interactions with various phytohormone-related genes. Thus, delving into the potential interactions between ZmGF14-3 and these genes holds the promise of yielding valuable insights into the molecular mechanisms underpinning plant height development in maize

    MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in rheumatoid arthritis

    Get PDF
    ObjectiveMALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA.MethodsTotally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells.ResultsMALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1’s effect on Th2 and Th17 differentiation.ConclusionMALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA

    Gut-joint axis in knee synovitis: gut fungal dysbiosis and altered fungi–bacteria correlation network identified in a community-based study

    Get PDF
    Objectives: Knee synovitis is a highly prevalent and potentially curable condition for knee pain; however, its pathogenesis remains unclear. We sought to assess the associations of the gut fungal microbiota and the fungi–bacteria correlation network with knee synovitis. Methods: Participants were derived from a community-based cross-sectional study. We performed an ultrasound examination of both knees. A knee was defined as having synovitis if its synovium was ≥4 mm and/or Power Doppler (PD) signal was within the knee synovium area (PD synovitis). We collected faecal specimens from each participant and assessed gut fungal and bacterial microbiota using internal transcribed spacer 2 and shotgun metagenomic sequencing. We examined the relation of α-diversity, β-diversity, the relative abundance of taxa and the interkingdom correlations to knee synovitis. Results: Among 977 participants (mean age: 63.2 years; women: 58.8%), 191 (19.5%) had knee synovitis. β-diversity of the gut fungal microbiota, but not α-diversity, was significantly associated with prevalent knee synovitis. The fungal genus Schizophyllum was inversely correlated with the prevalence and activity (ie, control, synovitis without PD signal and PD synovitis) of knee synovitis. Compared with those without synovitis, the fungi–bacteria correlation network in patients with knee synovitis was smaller (nodes: 93 vs 153; edges: 107 vs 244), and the average number of neighbours was fewer (2.3 vs 3.2). Conclusion: Alterations of gut fungal microbiota and the fungi–bacteria correlation network are associated with knee synovitis. These novel findings may help understand the mechanisms of the gut-joint axis in knee synovitis and suggest potential targets for future treatment
    • …
    corecore