34,528 research outputs found

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    First-principles study of magnetization relaxation enhancement and spin-transfer in thin magnetic films

    Get PDF
    The interface-induced magnetization damping of thin ferromagnetic films in contact with normal-metal layers is calculated from first principles for clean and disordered Fe/Au and Co/Cu interfaces. Interference effects arising from coherent scattering turn out to be very small, consistent with a very small magnetic coherence length. Because the mixing conductances which govern the spin transfer are to a good approximation real valued, the spin pumping can be described by an increased Gilbert damping factor but an unmodified gyromagnetic ratio. The results also confirm that the spin-current induced magnetization torque is an interface effect.Comment: 10 pages, 8 figures, RevTeX; modified according to Referees' request

    Spin-injection through an Fe/InAs Interface

    Get PDF
    The spin-dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first-principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarisation between 98 an 89%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry-breaking arising from interface disorder reduces the spin asymmetry substantially and we conclude that efficient spin injection from Fe into InAs can only be realized using high quality epitaxial interfaces.Comment: 4 pages, 4 figure

    Analysis and control of complex collaborative design systems

    Get PDF
    This paper presents a novel method for modelling the complexity of collaborative design systems based on its analysis and proposes a solution to reducing complexity and improving performance of such systems. The interaction and interfacing properties among many components of a complex design system are analysed from different viewpoints and then a complexity model for collaborative design is established accordingly. In order to simplify complexity and improve performance of collaborative design, a general solution of decomposing a whole system into sub-systems and using unified interface mechanism between them has been proposed. This proposed solution has been tested with a case study. It has been shown that the proposed solution is meaningful and practical

    More than a cognitive experience: unfamiliarity, invalidation, and emotion in organizational learning

    Get PDF
    Literature on organizational learning (OL) lacks an integrative framework that captures the emotions involved as OL proceeds. Drawing on personal construct theory, we suggest that organizations learn where their members reconstrue meaning around questions of strategic significance for the organization. In this 5-year study of an electronics company, we explore the way in which emotions change as members perceive progress or a lack of progress around strategic themes. Our framework also takes into account whether OL involves experiences that are familiar or unfamiliar and the implications for emotions. We detected similar patterns of emotion arising over time for three different themes in our data, thereby adding to OL perspectives that are predominantly cognitive in orientation

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Public Hospital Spending in England: Evidence from National Health Service Administrative Records

    Get PDF
    © 2016 The Authors. Fiscal Studies published by John Wiley & Sons Ltd. on behalf of Institute for Fiscal StudiesHealth spending per capita in England has almost doubled since 1997, yet relatively little is known about how that spending is distributed across the population. This paper uses administrative National Health Service (NHS) hospital records to examine key features of public hospital spending in England. We describe how costs vary across the life cycle, and the concentration of spending among people and over time. We find that costs per person start to increase after age 50 and escalate after age 70. Spending is highly concentrated in a small section of the population, but the degree of concentration is lower for older age groups. For those aged 25 and under, a third of all hospital spending is accounted for by 1 per cent of the population under 25 and a fifth of spending is accounted for by 1 per cent of patients under 25. For those aged 65 and over, these figures fall to 22 and 13 per cent, respectively. There is persistence in spending over time, with patients with high spending more likely to have spending in subsequent years and those with zero expenditures more likely to remain out of hospital

    Ecological indicators for abandoned mines, Phase 1: Review of the literature

    Get PDF
    Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work. A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals. The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions. With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures. Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely. The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+. There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified. Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information

    Neuraminidase Activity in \u3cem\u3eDiplococcus pneumoniae\u3c/em\u3e

    Get PDF
    Kelly, R. T. (Marquette University School of Medicine, Milwaukee, Wis.), D. Greiff, and S. Farmer. Neuraminidase activity in Diplococcus pneumoniae. J. Bacteriol. 91:601–603. 1966.—A method for the quantitation of neuraminidase in the presence of N-acetylneuraminic acid aldolase is described. The neuraminidase content of Diplococcus pneumoniae was found to be dependent on the media employed for growth; the highest enzyme activity per milligram of bacterial protein was obtained with Todd-Hewitt broth. Neuraminidase production was stimulated in D. pneumoniae by the addition of N-acetylneuraminlactose, N-acetylneuraminic acid, or N-acetylmannosamine to the growth medium. Three rough strains of D. pneumoniae, which were nonpathogenic for mice, lacked neuraminidase activity. Seven of 12 smooth strains contained neuraminidase; enzyme activity was not detected in the remaining 5 smooth strains. There was no correlation between the presence of neuraminidase activity and the capsular type or between neuraminidase production and animal virulence

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach
    corecore