3,491 research outputs found
The Influence of Foot-Strike Technique on the Neuromechanical Function of the Foot
This is the author accepted manuscript. The final version is available from Lippincott, Williams & Wilkins via the DOI in this recordPURPOSE: The aim of this study was to investigate the influence of foot-strike technique on longitudinal arch mechanics and intrinsic foot muscle function during running. METHODS: Thirteen healthy participants ran barefoot on a force-instrumented treadmill at 2.8 ms with a forefoot (FFS) and rearfoot (RFS; habitual) running technique, whereas kinetic, kinematic, and electromyographic data from the intrinsic foot muscles were collected simultaneously. The longitudinal arch was modeled as a single "midfoot" joint representing motion of the rearfoot (calcaneus) relative to the forefoot (metatarsals). An inverse dynamic analysis was performed to estimate joint moments generated about the midfoot, as well as mechanical work and power. RESULTS: The midfoot was more plantar flexed (higher arch) at foot contact when running with a forefoot running technique (RFS 0.2 ± 1.8 vs FFS 6.9 ± 3.0°, effect size (ES) = 2.7); however, there was no difference in peak midfoot dorsiflexion in stance (RFS -11.6 ± 3.0 vs FFS -11.4 ± 3.4°, ES = 0.63). When running with a forefoot technique, participants generated greater moments about the midfoot (27% increase, ES = 1.1) and performed more negative work (240% increase, ES = 2.2) and positive work (42% increase, ES = 1.1) about the midfoot. Average stance-phase muscle activation was greater for flexor digitorum brevis (20% increase, ES = 0.56) and abductor hallucis (17% increase, ES = 0.63) when running with a forefoot technique. CONCLUSIONS: Forefoot running increases loading about the longitudinal arch and also increases the mechanical work performed by the intrinsic foot muscles. These findings have substantial implications in terms of injury prevention and management for runners who transition from a rearfoot to a forefoot running technique.Funding for this study was provided via an industry research grant from Asics Oceania (grant identification number 2014000885
Shoes alter the spring-like function of the human foot during running
This is the author accepted manuscript. The final version is available from the Royal Society via the DOI in this recordThe capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings.Funding for this study was provided by Asics Oceania Pty
Ltd. Grant ID number 2014000885
Influenza epidemiology, vaccine coverage and vaccine effectiveness in sentinel Australian hospitals in 2013: the Influenza Complications Alert Network
The National Influenza Program aims to reduce serious morbidity and mortality from influenza by providing public funding for vaccination to at-risk groups. The Influenza Complications Alert Network (FluCAN) is a sentinel hospital-based surveillance program that operates at 14 sites in all states and territories in Australia. This report summarises the epidemiology of hospitalisations with confirmed influenza, estimates vaccine coverage and influenza vaccine protection against hospitalisation with influenza during the 2013 influenza season. In this observational study, cases were defined as patients admitted to one of the sentinel hospitals, with influenza confirmed by nucleic acid testing. Controls were patients who had acute respiratory illnesses who were test-negative for influenza. Vaccine effectiveness was estimated as 1 minus the odds ratio of vaccination in case patients compared with control patients, after adjusting for known confounders. During the period 5 April to 31 October 2012, 631 patients were admitted with confirmed influenza at the 14 FluCAN sentinel hospitals. Of these, 31% were more than 65 years of age, 9.5% were Indigenous Australians, 4.3% were pregnant and 77% had chronic co-morbidities. Influenza B was detected in 30% of patients. Vaccination coverage was estimated at 81% in patients more than 65 years of age but only 49% in patients aged less than 65 years with chronic comorbidities. Vaccination effectiveness against hospitalisation with influenza was estimated at 50% (95% confidence interval: 33%, 63%, P<0.001). We detected a significant number of hospital admissions with confirmed influenza in a national observational study. Vaccine coverage was incomplete in at-risk groups, particularly non-elderly patients with medical comorbidities. Our results suggest that the seasonal influenza vaccine was moderately protective against hospitalisation with influenza in the 2013 season. This work i
Community resilience, land degradation and endogenous lock-in effects: evidence from the Alento region, Campania, Italy
This study analyses social, economic and political “lock-ins” for understanding community resilience and land degradation. The study focuses on lock-ins from within communities, using four case study communities in Italy affected by land degradation. The analysis highlights the complex interrelationships between various lock-ins, and suggests that the communities are on declining resilience pathways that may lead to increasing difficulties in addressing land degradation issues in future
Orthogonal-view Microscope for the Biomechanics Investigations of Aquatic Organisms
Microscopes are essential for biomechanics and hydrodynamical investigation
of small aquatic organisms. We report a DIY microscope (GLUBscope) that enables
the visualization of organisms from two orthogonal imaging planes (top and side
views). Compared to conventional imaging systems, this approach provides a
comprehensive visualization strategy of organisms, which could have complex
shapes and morphologies. The microscope was constructed by combining custom
3D-printed parts and off-the-shelf components. The system is designed for
modularity and reconfigurability. Open-source design files and build
instructions are provided in this report. Additionally, proof of use
experiments, particularly with Hydra and other organisms that combine the
GLUBscope with an analysis pipeline, were demonstrated. Beyond the applications
demonstrated, the system can be used or modified for various imaging
applications
Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship
BACKGROUND AND OBJECTIVE: Walking and cycling have shown beneficial effects on population risk of all-cause mortality (ACM). This paper aims to review the evidence and quantify these effects, adjusted for other physical activity (PA). DATA SOURCES: We conducted a systematic review to identify relevant studies. Searches were conducted in November 2013 using the following health databases of publications: Embase (OvidSP); Medline (OvidSP); Web of Knowledge; CINAHL; SCOPUS; SPORTDiscus. We also searched reference lists of relevant texts and reviews. STUDY ELIGIBILITY CRITERIA AND PARTICIPANTS: Eligible studies were prospective cohort design and reporting walking or cycling exposure and mortality as an outcome. Only cohorts of individuals healthy at baseline were considered eligible. STUDY APPRAISAL AND SYNTHESIS METHODS: Extracted data included study population and location, sample size, population characteristics (age and sex), follow-up in years, walking or cycling exposure, mortality outcome, and adjustment for other co-variables. We used random-effects meta-analyses to investigate the beneficial effects of regular walking and cycling. RESULTS: Walking (18 results from 14 studies) and cycling (8 results from 7 studies) were shown to reduce the risk of all-cause mortality, adjusted for other PA. For a standardised dose of 11.25 MET.hours per week (or 675 MET.minutes per week), the reduction in risk for ACM was 11% (95% CI = 4 to 17%) for walking and 10% (95% CI = 6 to 13%) for cycling. The estimates for walking are based on 280,000 participants and 2.6 million person-years and for cycling they are based on 187,000 individuals and 2.1 million person-years. The shape of the dose-response relationship was modelled through meta-analysis of pooled relative risks within three exposure intervals. The dose-response analysis showed that walking or cycling had the greatest effect on risk for ACM in the first (lowest) exposure interval. CONCLUSIONS AND IMPLICATIONS: The analysis shows that walking and cycling have population-level health benefits even after adjustment for other PA. Public health approaches would have the biggest impact if they are able to increase walking and cycling levels in the groups that have the lowest levels of these activities. REVIEW REGISTRATION: The review protocol was registered with PROSPERO (International database of prospectively registered systematic reviews in health and social care) PROSPERO 2013: CRD42013004266
Towards the “ultimate earthquake-proof” building: Development of an integrated low-damage system
The 2010–2011 Canterbury earthquake sequence has highlighted the
severe mismatch between societal expectations over the reality of seismic performance
of modern buildings. A paradigm shift in performance-based design criteria
and objectives towards damage-control or low-damage design philosophy and
technologies is urgently required. The increased awareness by the general public,
tenants, building owners, territorial authorities as well as (re)insurers, of the severe
socio-economic impacts of moderate-strong earthquakes in terms of damage/dollars/
downtime, has indeed stimulated and facilitated the wider acceptance and
implementation of cost-efficient damage-control (or low-damage) technologies.
The ‘bar’ has been raised significantly with the request to fast-track the development
of what the wider general public would hope, and somehow expect, to live
in, i.e. an “earthquake-proof” building system, capable of sustaining the shaking of
a severe earthquake basically unscathed.
The paper provides an overview of recent advances through extensive research,
carried out at the University of Canterbury in the past decade towards the development
of a low-damage building system as a whole, within an integrated
performance-based framework, including the skeleton of the superstructure, the
non-structural components and the interaction with the soil/foundation system.
Examples of real on site-applications of such technology in New Zealand, using
concrete, timber (engineered wood), steel or a combination of these materials, and
featuring some of the latest innovative technical solutions developed in the laboratory
are presented as examples of successful transfer of performance-based seismic
design approach and advanced technology from theory to practice
Negotiation in strategy making teams : group support systems and the process of cognitive change
This paper reports on the use of a Group Support System (GSS) to explore at a micro level some of the processes manifested when a group is negotiating strategy-processes of social and psychological negotiation. It is based on data from a series of interventions with senior management teams of three operating companies comprising a multi-national organization, and with a joint meeting subsequently involving all of the previous participants. The meetings were concerned with negotiating a new strategy for the global organization. The research involved the analysis of detailed time series data logs that exist as a result of using a GSS that is a reflection of cognitive theory
Hyperglycaemia and diabetes impair gap junctional communication among astrocytes
Sensory and cognitive impairments have been documented in diabetic humans and
animals, but the pathophysiology of diabetes in the central nervous system is
poorly understood. Because a high glucose level disrupts gap junctional
communication in various cell types and astrocytes are extensively coupled by
gap junctions to form large syncytia, the influence of experimental diabetes on
gap junction channel-mediated dye transfer was assessed in astrocytes in tissue
culture and in brain slices from diabetic rats. Astrocytes grown in
15–25 mmol/l glucose had a slow-onset, poorly reversible decrement in
gap junctional communication compared with those grown in 5.5 mmol/l glucose.
Astrocytes in brain slices from adult STZ (streptozotocin)-treated rats at
20–24 weeks after the onset of diabetes also exhibited reduced dye
transfer. In cultured astrocytes grown in high glucose, increased oxidative
stress preceded the decrement in dye transfer by several days, and gap
junctional impairment was prevented, but not rescued, after its manifestation by
compounds that can block or reduce oxidative stress. In sharp contrast with
these findings, chaperone molecules known to facilitate protein folding could
prevent and rescue gap junctional impairment, even in the presence of elevated
glucose level and oxidative stress. Immunostaining of Cx (connexin) 43 and 30,
but not Cx26, was altered by growth in high glucose. Disruption of astrocytic
trafficking of metabolites and signalling molecules may alter interactions among
astrocytes, neurons and endothelial cells and contribute to changes in brain
function in diabetes. Involvement of the microvasculature may contribute to
diabetic complications in the brain, the cardiovascular system and other
organs
- …