183 research outputs found
Three-Dimensional Vapor Intrusion Modeling Approach that Combines Wind and Stack Effects on Indoor, Atmospheric, and Subsurface Domains
Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately −10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks
US Residential Building Air Exchange Rates: New Perspectives to Improve Decision Making at Vapor Intrusion Sites
Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites
Air Exchange Rates and Alternatuve Vapor Entry Pathways to Inform Vapor Intrusion Exposure Risk Assessments
Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative “preferential” pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks
Appalachian Environmental Health Literacy: Building Knowledge and Skills to Protect Health
Environmental health literacy (EHL) is an emerging, multidisciplinary field that promotes understanding of how environmental exposures can affect human health. After discussing the regional relevance of environmental health knowledge and skills, this article describes three ongoing Appalachian projects that are focused on measuring and building EHL
Occurrence of Chlorinated Volatile Organic Compounds (VOCs) in a Sanitary Sewer System: Implications for Assessing Vapor Intrusion Alternative Pathways
Sewer systems have been recently recognized as potentially important exposure pathways to consider during vapor intrusion assessments; however, this pathway has not been well-characterized and there is need for additional information about the occurrence of volatile organic compounds (VOCs) in sewer systems. This paper reports the results of sewer gas sampling conducted in a sanitary sewer over the years of 2014–2017. Sewer gas samples were collected and analyzed using several different techniques, including TO-15 (grab), TO-17 (passive), Radiello® (passive) and a novel continuous monitoring technique, the Autonomous Rugged Optical Multigas Analyzer (AROMA). The applicability of each of the different approaches used in this study is discussed in the context of investigating sanitary sewers as a vapor intrusion alternative pathway. The data confirmed that trichloroethylene (TCE) concentrations in sewer gas were detected adjacent to and extending hundreds of feet away from a previously defined vapor intrusion area, where TCE was a primary contaminant. TCE concentrations detected in sewer gas ranged from non-detect to 1600 μg/m3. Temporal variability was observed in TCE concentrations over timescales that ranged from minutes to months to years at discrete sampling locations. Spatial variability in sewer gas concentrations was also observed throughout the study area. Temporal and spatial variability may be caused by groundwater contamination sources in the study area, as well as sewer gas transport mechanisms
The politics of heroes through the prism of popular heroism
This is the author accepted manuscript. The final version is available from Palgrave Macmillan via the DOI in this record.In modern day Britain, the discourse of national heroification is routinely utilised by politicians, educationalists and cultural industry professionals, whilst also being a popular concept to describe deserving ‘do-gooders’ who contribute to British society in a myriad of ways. We argue that although this heroification discourse is enacted as a discursive device of encouraging politically and morally desirable behaviour, it is dissociated from the largely under-explored facets of contemporary popular heroism. To compensate for this gap, this paper explores public preferences for heroes using survey data representative of British adults. This analysis demonstrates a conceptual stretching in the understanding of heroism, and allows identifying age- and gender-linked dynamics which effect public choices of heroes. In particular, we demonstrate that age above all determines the preference for having a hero, but does not explain preferences for specific hero-types. The focus on gender illustrates that the landscape of popular heroism reproduces a male-dominated bias which exists in the wider political and cultural heroification discourse. Simultaneously, our study shows that if national heroification discourse in Britain remains male-centric, the landscape of popular heroism is characterised by a gendered trend towards privatisation of heroes being particularly prominent amongst women. In the conclusion, this paper argues for a conceptual revision and re-gendering of the national heroification discourse as a step towards both empirically grounded, and age- and gender-sensitive politics of heroes and heroines.AHR
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …