4,124 research outputs found
Keypad mobile phones are associated with a significant increased risk of microbial contamination compared to touch screen phones
The use of mobile phones in the clinical environment by healthcare workers has become widespread. Despite evidence that these devices can harbour pathogenic micro-organisms there is little guidance on how to reduce contamination. Recently touchscreen phones with a single flat surface have been introduced. We hypothesise that bacterial contamination of phones used in hospitals will be lower on touchscreen devices compared to keypad devices. Sixty seven mobile phones belonging to health care workers were sampled. The median colony count for touchscreen phones and keypad devices was 0·09 colony forming units (cfu)/cm2 (interquartile range (IQR) 0.05–0·14) and 0·77 cfu/cm2 (IQR range 0·45–3.52) respectively. Colony counts were significantly higher on the keypad phones (Fisher’s exact test p<0.001). Multivariate analysis showed the type of phone (keypad vs. touch screen) was associated with increased colony counts (F-statistic 14.13: p<0.001). Overall, nine (13%) phones grew either meticillin resistant Staphylococcus aureus or vancomycin resistant enterococci. Eight (24%) keypad phones were contaminated with these organisms compared with one touch screen phone (3%). Our data indicate that touchscreen mobile phones are less contaminated than their keypad counterparts, and they are less likely to harbour pathogenic bacteria in the clinical setting
Improving health literacy of antifungal use - Comparison of the readability of antifungal medicines information from Australia, EU, UK, and US of 16 antifungal agents across 5 classes (allylamines, azoles, echinocandins, polyenes, and others)
Adherence to antifungals is poor in high endemic regions where antifungal resistance is high. Poor readability of prescription/over-the-counter (OTC) antifungals may contribute to poor adherence, due to the patient not fully understanding the purpose, importance, and dosage of their antifungal medicine. As there are no reports on the readability of antifungals, this study examined the readability of patient-facing antifungal information. Antifungals (n = 16; five classes [allylamines, azoles, echinocandins, polyenes, and others—flucytosine and griseofulvin]) were selected. Readability of four sources of information, (i) summary of product characteristics, (ii) patient information leaflets (PILs), (iii) OTC patient information, and (iv) patient web-based information, was calculated using Readable software, to obtain readability scores [(i) Flesch Reading Ease [FRE], (ii) Flesch–Kinkaid Grade Level [FKGL], (iii) Gunning Fog Index, and (iv) Simple Measure of Gobbledygook (SMOG) Index) and text metrics [word count, sentence count, words/sentence, and syllables/word]. PILs, web-based resources, and OTC patient information had good readability (FRE mean ± sd = 52.8 ± 6.7, 58.6 ± 6.9, and 57.3 ± 7.4, respectively), just falling short of the ≥ 60 target. For FKGL (target ≤ 8.0), PILs, web-based resources, and OTC patient information also had good readability (mean ± sd = 8.5 ± 1.0, 7.2 ± 0.86, and 7.8 ± 0.1, respectively). Improved readability scores observed correlate with reduced words, words/sentence and syllables/word. Improving readability may lead to improved patient health literacy. Healthcare professionals, academics, and publishers preparing written materials regarding antifungals for the lay/patient community are encouraged to employ readability calculators to check the readability of their work, so that the final material is within recommended readability reference parameters, to support the health literacy of their patients/readers
Stressful Life Events Among Incarcerated Women and Men: Association With Depression, Loneliness, Hopelessness, and Suicidality
Background: Justice-involved populations report a higher than average number of pre-incarceration stressful life events. However, few studies have described stressful life events which occur during incarceration, explored gender differences in these events, or evaluated the effect of these events on well-being. Method: This study draws from a sample of male and female adults incarcerated in 6 prison facilities across two states (n = 160) to identify the number and type of stressful life events they experienced during incarceration, gender differences in stressful events, and the relationship between stressful life events and markers of well-being (i.e., depression, hopelessness, loneliness, suicidality). We also examined whether perceived social support would buffer the relationship between stressful events and well-being outcomes. Results: Participants on average reported experiencing 4 stressful life events during their current incarceration, the most common being relocation to another cell and being made fun of/insulted by someone in the prison. There were few gender differences in types of events experienced. Regression analyses showed that stressful life events were associated with more loneliness, as well as suicidality, but only when participants had low perceived social support. Conclusions: Stressful life events, and drawing on social support networks to cope with stress, should be addressed in the context of correctional treatments to reduce suicide risk during incarceration
CE19004
The 2019 Irish Anglerfish and Megrim Survey (IAMS) took place from 1-25th March (area 7bcjk) and 16-25th April 2019 (area 6a) on RV Celtic Explorer.
The main objective of the survey is to obtain biomass and abundance indices for anglerfish (Lophius piscatorius and L. budegassa) and megrim (Lepidorhombus whiffiagonis and L. boscii) in areas 6a (south of 58°N) and 7 (west of 8°W).
Secondary objectives are to collect data on the distribution, relative abundance and biology of other commercially exploited species.
This year, additional sampling took place in deep water (up to 1,500m) in order to monitor the recovery of exploited deep-water species following the decline of the deep-water fisheries in Irish waters.
The IAMS survey is coordinated with the Scottish Anglerfish and Megrim Survey (SIAMISS) and uses the same gear and fishing practices
Shortgrass Steppe LTER VI: examining ecosystem persistence and responses to global change, 2010-2014 proposal
Includes bibliographical references.The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.The Shortgrass Steppe Long-term Ecological Research (SGS-LTER) program focuses on how grassland ecosystems function and persist or change in the face of global change. Our conceptual framework asserts that climate, physiography, grazing, fire and landuse, operating over different spatial and temporal scales, are the dominant determinants of the structure, function, and persistence of the SGS. Using the shortgrass steppe (SGS) ecosystem of the North American Great Plains as a model, we seek to (1) identify the ecological attributes of grasslands that historically have resulted in their persistence and (2) understand these attributes in ways that will allow us to identify area of vulnerability and better forecast the future of grasslands in the face of global change. Given its geographic extent and history, the SGS encapsulates many of the features of a system driven by social-ecological interactions and the vulnerabilities of semiarid grasslands to global change. Our overarching question is: How will structure and function of the SGS respond to expected changes in climate, management, and land-use, and what will be the consequences
Planned Missing Data Designs & Small Sample Size: How Small is Too Small?
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This paper explores this question by using simulated three-form planned missing data to assess analytic model convergence, parameter estimate bias, standard error bias, mean squared error (MSE), and relative efficiency (RE).Three models were examined: a one-time point, cross-sectional model with 3 constructs; a two-time point model with 3 constructs at each time point; and a three-time point, mediation model with 3 constructs over three time points. Both full-information maximum likelihood (FIML) and multiple imputation (MI) were used to handle the missing data. Models were found to meet convergence rate and acceptable bias criteria with FIML at smaller sample sizes than with MI
CarbonÂyl[trisÂ(3,5-diphenylÂpyrazol-1-yl-ÎşN 2)methane]copper(I) hexaÂfluoridoÂphosphate–dichloroÂmethane–diethyl ether (4/3/1)
In the title compound, [Cu(C46H34N6)(CO)]PF6·0.75CH2Cl2·0.25C4H10O, the CuI atom is coordinated by three N atoms from the tridentate chelating trisÂ(3,5-diphenylÂpyrazol-1-yl)methane ligand (average Cu—N distance = 2.055 Å) and the C atom from a carbon monoxide ligand in a distorted tetraÂhedral coordination geometry. The average N—Cu—N angle between adjacent pyrazole-ring-coordinated N atoms is 88.6°, while the average N—Cu—C angle between the pyrazole-bound N atom and the C atom of carbon monoxide is 126.3°. One of the 3-phenyl rings of the trisÂ(pyrazolÂyl)methane ligand is disordered over two sites each with an occupancy factor of 0.50. The structure also exhibits disorder of the monosolvate that has been modeled with 0.75 CH2Cl2 and 0.25 Et2O occupancy
Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers
Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 29 (2006): 1971-1983, doi:10.1016/j.csr.2006.07.011.A field experiment to compare methods of assessing submarine groundwater discharge (SGD) was held on Shelter Island, NY, in May 2002. We evaluated the use of radon, radium isotopes, and methane to assess SGD rates and dynamics from a glacial aquifer in the coastal zone. Fluxes of radon across the sediment-water interface were calculated from changes in measured surface water inventories following evaluation and correction for tidal effects, atmospheric evasion, and mixing with offshore waters. These fluxes were then converted to SGD rates using the measured radon concentration in the groundwater. We used the short-lived radium isotopes to calculate a horizontal mixing coefficient to assess radon loss by mixing between nearshore and offshore waters. We also made an independent calculation of SGD using the Ra-derived mixing coefficient and the long-lived 226Ra concentration gradient in the bay. Seepage rates were calculated to range between 0 and 34 cm.day-1 using the radon measurements and 15 cm.day-1 as indicated by the radium isotopes. The radiotracer results were consistent and comparable to SGD rates measured directly with vented benthic chambers (seepage meters) deployed during this experiment. These meters indicated rates between 2 and 200 cm.day-1 depending on their location. Both the calculated radon fluxes and rates measured directly by the automated seepage meters revealed a clear reproducible pattern of higher fluxes during low tides. Considering that the two techniques are completely independent, the agreement in the SGD dynamics is significant. Methane concentration in groundwater was very low (~30 nM) and not suitable as SGD tracer at this study site.The SGD intercomparison experiment was partially funded by SCOR, LOICZ, and UNESCO (IOC and IHP). W. C. Burnett acknowledges support from CICEET (Grant# 1368-810-41) and ONR (Grant# 1368-769-27). J. P. Chanton acknowledges support from Seagrant (R\C-E-44). The WHOI researchers acknowledge funding from CICEET (#NA07OR0351, NA17OZ2507)
- …