24,935 research outputs found

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Cosmology and astrophysics from relaxed galaxy clusters - IV: Robustly calibrating hydrostatic masses with weak lensing

    Full text link
    This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses provides a measurement of the combined bias of X-ray hydrostatic masses due to both astrophysical and instrumental sources. Assuming a fixed cosmology, and within a characteristic radius (r_2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 +/- 9% (stat) +/- 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. In accordance with predictions from hydro simulations for the most massive, relaxed clusters, our results disfavor strong, tens-of-percent departures from hydrostatic equilibrium at these radii. In addition, we find a mean concentration of the sample measured from lensing data of c_200 = 3.01.8+4.43.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30--50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Omega_m from the cluster gas mass fraction.Comment: 13 pages. Submitted to MNRAS. Comments welcom

    Simulating the Performance of Large-Format Submillimetre Focal-Plane Arrays

    Full text link
    A robust measurement of the clustering amplitude of the sub-mm population of starburst galaxies requires large-area surveys (>> 1 deg^2). The largest-format arrays subtend only 10 arcmin^2 on the sky and hence scan-mapping is a necessary observing mode. Providing realistic representations of the extragalactic sky and atmosphere, as the input to a detailed simulator of the telescope and instrument performance, allows important decisions to be made about the design of large-area fully-sampled surveys and observing strategies. In this paper we present preliminary simulations that include detector noise, time-constants and array geometry, telescope pointing errors, scan speeds and scanning angles, sky noise and sky rotation.Comment: 3 pages, 3 figures, Conference Contribution: 2K1BC Workshop "Experimental Cosmology at millimetre wavelengths", July 9-13 2001, Ital

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Millimeter wave satellite concepts. Volume 1: Executive summary

    Get PDF
    The objectives of the program were: (1) development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and (2) testing of this methodology with user applications and services. The scope of the program included the entire communications network, both ground and space subsystems. The reports include: (1) cost, weight, and performance models for the subsystems, (2) conceptual design for point-to-point and broadcast communications satellites, (3) analytic relationships between subsystem parameters and an overall link performance, (4) baseline conceptual systems, (5) sensitivity studies, (6) model adjustment analyses, (7) identification of critical technologies and their risks, (8) brief R&D program scenarios for the technologies judged to be moderate or extensive risks

    The influence of self-citation corrections on Egghe's g index

    Full text link
    The g index was introduced by Leo Egghe as an improvement of Hirsch's index h for measuring the overall citation record of a set of articles. It better takes into account the highly skewed frequency distribution of citations than the h index. I propose to sharpen this g index by excluding the self-citations. I have worked out nine practical cases in physics and compare the h and g values with and without self-citations. As expected, the g index characterizes the data set better than the h index. The influence of the self-citations appears to be more significant for the g index than for the h index.Comment: 9 pages, 2 figures, submitted to Scientometric

    Crystal Structure and Computational Analysis of a Two-Dimensional Coordination Polymer, BiI3(DppeO2)3/2

    Get PDF
    Catena-poly[fac-triiodobismuth(III)-tris-(µ-ethane-1,2-diylbis(diphenylphosphane oxide-κ2O,O′))], a 2-D sheet network of BiI3 was synthesized from BiI3 and ethane-1,2-diylbis(diphenylphosphane oxide) (DppeO2) in tetrahydrofuran. The crystal structure revealed a trigonal structure with three-fold symmetry at Bi. Bismuth centers show fac-BiI3O3 coordination, with Bi–I = 2.9416(2) Å and Bi–O = 2.4583(17) Å. The I–Bi–I and O–Bi–O angles (95.520(7)° and 79.04(6)°, respectively) indicate trigonal distortion in the Bi octahedron. Bridging DppeO2 ligands centered on inversion centers give rise to a 2-D sheet polymer. The 8.3 Å thick sheets consist of three layers in a sandwich structure. The outer layers are composed of phenyl rings and BiI3 groups with the iodide atoms pointing outward. The central layer consists of the O=PCH2CH2P=O bridging groups. Computational results suggest that semi-conducting behavior arises from Bi(III) centers. A halide to DppeO2 π* transition is suggested by theoretical results

    Neuraminidase Activity in \u3cem\u3eDiplococcus pneumoniae\u3c/em\u3e

    Get PDF
    Kelly, R. T. (Marquette University School of Medicine, Milwaukee, Wis.), D. Greiff, and S. Farmer. Neuraminidase activity in Diplococcus pneumoniae. J. Bacteriol. 91:601–603. 1966.—A method for the quantitation of neuraminidase in the presence of N-acetylneuraminic acid aldolase is described. The neuraminidase content of Diplococcus pneumoniae was found to be dependent on the media employed for growth; the highest enzyme activity per milligram of bacterial protein was obtained with Todd-Hewitt broth. Neuraminidase production was stimulated in D. pneumoniae by the addition of N-acetylneuraminlactose, N-acetylneuraminic acid, or N-acetylmannosamine to the growth medium. Three rough strains of D. pneumoniae, which were nonpathogenic for mice, lacked neuraminidase activity. Seven of 12 smooth strains contained neuraminidase; enzyme activity was not detected in the remaining 5 smooth strains. There was no correlation between the presence of neuraminidase activity and the capsular type or between neuraminidase production and animal virulence
    corecore