390 research outputs found

    Caustics of Compensated Spherical Lens Models

    Get PDF
    We consider compensated spherical lens models and the caustic surfaces they create in the past light cone. Examination of cusp and crossover angles associated with particular source and lens redshifts gives explicit lensing models that confirm previous claims that area distances can differ by substantial factors from angular diameter distances even when averaged over large angular scales. `Shrinking' in apparent sizes occurs, typically by a factor of 3 for a single spherical lens, on the scale of the cusp caused by the lens; summing over many lenses will still leave a residual effect.Comment: 21 pages, 5 ps figures, eps

    Stresses in a half space due to Newtonian gravitation

    Full text link
    An efficient general solution is obtained for the problem of the elastic half space z > 0 with a traction-free surface experiencing gravitational attraction to an arbitrarily shaped body located in z < 0. Many components of the stress field can be written down immediately if the potential of the attracting body is known. Results are given for the case of attraction to a uniform sphere.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42687/1/10659_2005_Article_4105.pd

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    Spallation Neutron Production by 0.8, 1.2 and 1.6 GeV Protons on various Targets

    Full text link
    Spallation neutron production in proton induced reactions on Al, Fe, Zr, W, Pb and Th targets at 1.2 GeV and on Fe and Pb at 0.8, and 1.6 GeV measured at the SATURNE accelerator in Saclay is reported. The experimental double-differential cross-sections are compared with calculations performed with different intra-nuclear cascade models implemented in high energy transport codes. The broad angular coverage also allowed the determination of average neutron multiplicities above 2 MeV. Deficiencies in some of the models commonly used for applications are pointed out.Comment: 20 pages, 32 figures, revised version, accepted fpr publication in Phys. Rev.

    Focused Ion Beam Fabrication

    Get PDF
    Contains summary of research program and reports on four research projects.Charles Stark Draper Laboratory (Contract DL-H-225270)Hughes Research LaboratoriesInternational Business Machines, Inc. (Contract 456614)Nippon Telegraph and Telephone, Inc.U.S. Navy - Office of Naval Research (Contract N00014-84-K-0073)U.S. Department of Defense (Contract MDA903-85-C-0215)Hitachi Central Research Laborator

    Protection of rat renal vitamin E levels by ischemic-preconditioning

    Get PDF
    BACKGROUND: During renal transplantation, the kidney remains without blood flow for a period of time. The following reperfusion of this ischemic kidney causes functional and structural injury. Formation of oxygen-derived free radicals (OFR) and subsequent lipid peroxidation (LP) has been implicated as the causative factors of these injuries. Vitamin E is known to be the main endogenous antioxidant that stabilizes cell membranes by interfering with LP. The present study was designed to examine the role of ischemic-preconditioning (repeated brief periods of ischemia, IPC) in prevention of renal injury caused by ischemia-reperfusion (IR) in rats. METHODS: IPC included sequential clamping of the right renal artery for 5 min and release of the clamp for another 5 min for a 3 cycles. IR was induced by 30 min ischemia followed by 10 min reperfusion. Four groups of male rats were used: Control, IPC, IR and IPC-IR. Vitamin E, an endogenous antioxidant and as an index of LP, was measured by HPLC and UV detection in renal venous plasma and tissue. Renal function was assessed by serum creatinine and BUN levels. Renal damage was assessed in sections stained with Haematoxylin and Eosin. RESULTS: In the IR group, there was a significant decrease in vitamin E in plasma and tissue compared to a control group (p,0.05). In the IPC-IR group, vitamin E concentration was significantly higher than in the IR group (p,0.01). The results showed that 30 min ischemia in the IR group significantly (p,0.05) reduced renal function demonstrated by an increase in serum creatinine levels as compared with the control group. These results in the IPC group also showed a significant difference with the IR group but no significant difference in serum BUN and creatinine between IR and IPC-IR group were detected. Histological evaluation showed no structural damage in the IPC group and an improvement in the IPC-IR group compared to IR alone. CONCLUSIONS: In this study, IPC preserved vitamin E levels, but it could not markedly improve renal function in the early phase (1–2 h) of reperfusion. IPC may be a useful method for antioxidant preservation in organ transplantation

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Focused Ion Beam Fabrication

    Get PDF
    Contains reports on three research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Charles Stark Draper Laboratory (Contract DL-H-225270)International Business Machines, Inc. (Contract 3260

    A quantitative polymerase chain reaction-enzyme immunoassay for accurate measurements of human papillomavirus type 16 DNA levels in cervical scrapings

    Get PDF
    A quantitative polymerase chain reaction-enzyme immunoassay (Q-PCR-EIA) was developed to measure the amount of human papillomavirus (HPV) 16 DNA per genome equivalent in cervical scrapings. The quantitative approach was based on a combined competitive PCR for both HPV 16, using the general primer GP5+/6+ PCR, and β-globin DNA. The two competitive PCRs involve co-amplification of target sequences and exogenously added DNA constructs carrying a rearranged 30 bp sequence in the probe-binding region. The accuracy of quantification by combining the two competitive PCR assays was validated on mixtures of HPV 16 containing cervical cancer cells of CaSki and SiHa cell lines. Comparison of this fully quantitative PCR assay with two semi-quantitative HPV PCR assays on a series of crude cell suspensions from HPV 16 containing cervical scrapings revealed remarkable differences in the calculated relative HPV load between samples. We found evidence that correction for both intertube variations in PCR efficiency and number of input cells/integrity of DNA significantly influence the outcome of studies on viral DNA load in crude cell suspensions of cervical scrapings. Therefore, accurate measurements on viral DNA load in cervical scrapings require corrections for these phenomena, which can be achieved by application of this fully quantitative approach. © 1999 Cancer Research Campaig
    • …
    corecore