975 research outputs found

    Recovering metric properties of objects through spatiotemporal interpolation

    Get PDF
    AbstractSpatiotemporal interpolation (STI) refers to perception of complete objects from fragmentary information across gaps in both space and time. It differs from static interpolation in that requirements for interpolation are not met in any static frame. It has been found that STI produced objective performance advantages in a shape discrimination paradigm for both illusory and occluded objects when contours met conditions of spatiotemporal relatability. Here we report psychophysical studies testing whether spatiotemporal interpolation allows recovery of metric properties of objects. Observers viewed virtual triangles specified only by sequential partial occlusions of background elements by their vertices (the STI condition) and made forced choice judgments of the object’s size relative to a reference standard. We found that length could often be accurately recovered for conditions where fragments were relatable and formed illusory triangles. In the first control condition, three moving dots located at the vertices provided the same spatial and timing information as the virtual object in the STI condition but did not induce perception of interpolated contours or a coherent object. In the second control condition oriented line segments were added to the dots and mid-points between the dots in a way that did not induce perception of interpolated contours. Control stimuli did not lead to accurate size judgments. We conclude that spatiotemporal interpolation can produce representations, from fragmentary information, of metric properties in addition to shape

    surface interpolation and 3d relatability

    Get PDF
    Although the role of surface-level processes has been demonstrated, visual interpolation models often emphasize contour relationships. We report two experiments on geometric constraints governing 3D interpolation between surface patches without visible edges. Observers were asked to classify pairs of planar patches specified by random dot disparities and visible through circular apertures (aligned or misaligned) in a frontoparallel occluder. On each trial, surfaces appeared in parallel or converging planes with vertical (in Experiment 1) or horizontal (in Experiment 2) tilt and variable amounts of slant. We expected the classification task to be facilitated when patches were perceived as connected. We found enhanced sensitivity and speed for 3D relatable vs. nonrelatable patches. Here 3D relatability does not involve oriented edges but rather inducing patches' orientations computed from stereoscopic information. Performance was markedly affected by slant anisotropy: both sensitivity and speed were worse for patches with horizontal tilt. We found nearly identical advantages of 3D relatability on performance, suggesting an isotropic unit formation process. Results are interpreted as evidence that inducing slant constrains surface interpolation in the absence of explicit edge information: 3D contour and surface interpolation processes share common geometric constraints as formalized by 3D relatability

    Collective and independent-particle motion in two-electron artificial atoms

    Full text link
    Investigations of the exactly solvable excitation spectra of two-electron quantum dots with a parabolic confinement, for different values of the parameter R_W expressing the relative magnitudes of the interelectron repulsion and the zero-point kinetic energy of the confined electrons, reveal for large R_W a remarkably well-developed ro-vibrational spectrum associated with formation of a linear trimeric rigid molecule composed of the two electrons and the infinitely heavy confining dot. This spectrum transforms to one characteristic of a "floppy" molecule for smaller values of R_W. The conditional probability distribution calculated for the exact two-electron wave functions allows for the identification of the ro-vibrational excitations as rotations and stretching/bending vibrations, and provides direct evidence pertaining to the formation of such molecules.Comment: Published version. Latex/Revtex, 5 pages with 2 postscript figures embedded in the text. For related papers, see http://www.prism.gatech.edu/~ph274c

    Optimization of carbon and energy utilization through differential translational efficiency.

    Get PDF
    Control of translation is vital to all species. Here we employ a multi-omics approach to decipher condition-dependent translational regulation in the model acetogen Clostridium ljungdahlii. Integration of data from cells grown autotrophically or heterotrophically revealed that pathways critical to carbon and energy metabolism are under strong translational regulation. Major pathways involved in carbon and energy metabolism are not only differentially transcribed and translated, but their translational efficiencies are differentially elevated in response to resource availability under different growth conditions. We show that translational efficiency is not static and that it changes dynamically in response to mRNA expression levels. mRNAs harboring optimized 5'-untranslated region and coding region features, have higher translational efficiencies and are significantly enriched in genes encoding carbon and energy metabolism. In contrast, mRNAs enriched in housekeeping functions harbor sub-optimal features and have lower translational efficiencies. We propose that regulation of translational efficiency is crucial for effectively controlling resource allocation in energy-deprived microorganisms

    Landmark Detection in Cardiac MRI Using a Convolutional Neural Network

    Get PDF
    Purpose: To develop a convolutional neural network (CNN) solution for landmark detection in cardiac MRI. / Materials and Methods: This retrospective study included cine, late-gadolinium enhancement (LGE), and T1 mapping scans from two hospitals. The training set included 2329 patients (34019 images; mean age 54.1 years; 1471 men; December 2017-March 2020). A hold-out test set included 531 patients (7723 images; mean age 51.5 years, 323 men; May 2020-July 2020). CNN models were developed to detect two mitral valve plane and apical points on long-axis images. On short-axis images, anterior and posterior right ventricular insertion points and left ventricle center were detected. Model outputs were compared with manual labels by two readers. The trained model was deployed to MR scanners. / Results: For the long-axis images, successful detection of cardiac landmarks ranged from 99.7% to 100% for cine images and from 99.2% to 99.5% for LGE images. For the short-axis, detection rates was 96.6% for cine, 97.6% for LGE, and 98.9% for T1-mapping. The Euclidean distances between model and manual labels ranged from 2 to 3.5 mm for different landmarks, indicating close agreement between model landmarks to manual labels. No differences were found for the anterior right ventricular insertion angle and left ventricle length by the models and readers for all views and imaging sequences. Model inference on MR scanner took 610 msec on the graphics processing unit and 5.6 sec on central processing unit, respectively, for a typical cardiac cine series. / Conclusion: A CNN was developed for landmark detection in both long and short-axis cardiac MR images for cine, LGE and T1 mapping sequences, with the accuracy comparable to the interreader variation

    Shape from dots: a window into abstraction processes in visual perception

    Get PDF
    IntroductionA remarkable phenomenon in perception is that the visual system spontaneously organizes sets of discrete elements into abstract shape representations. We studied perceptual performance with dot displays to discover what spatial relationships support shape perception.MethodsIn Experiment 1, we tested conditions that lead dot arrays to be perceived as smooth contours vs. having vertices. We found that the perception of a smooth contour vs. a vertex was influenced by spatial relations between dots beyond the three points that define the angle of the point in question. However, there appeared to be a hard boundary around 90° such that any angle 90° or less was perceived as a vertex regardless of the spatial relations of ancillary dots. We hypothesized that dot arrays whose triplets were perceived as smooth curves would be more readily perceived as a unitary object because they can be encoded more economically. In Experiment 2, we generated dot arrays with and without such “vertex triplets” and compared participants’ phenomenological reports of a unified shape with smooth curves vs. shapes with angular corners. Observers gave higher shape ratings for dot arrays from curvilinear shapes. In Experiment 3, we tested shape encoding using a mental rotation task. Participants judged whether two dot arrays were the same or different at five angular differences. Subjects responded reliably faster for displays without vertex triplets, suggesting economical encoding of smooth displays. We followed this up in Experiment 4 using a visual search task. Shapes with and without vertex triplets were embedded in arrays with 25 distractor dots. Participants were asked to detect which display in a 2IFC paradigm contained a shape against a distractor with random dots. Performance was better when the dots were sampled from a smooth shape than when they were sampled from a shape with vertex triplets.Results and discussionThese results suggest that the visual system processes dot arrangements as coherent shapes automatically using precise smoothness constraints. This ability may be a consequence of processes that extract curvature in defining object shape and is consistent with recent theory and evidence suggesting that 2D contour representations are composed of constant curvature primitives
    • …
    corecore