224 research outputs found

    The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on tissue microarray

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>mTOR signaling pathway and its downstream serine/threonine kinase p70S6k were frequently activated in human cancers. The dysregulation of the mTOR pathway has been found to be a contributing factor of a variety of different cancer. To investigate the role of mTOR signal pathway in the stepwise development of gastric carcinomas, we analyzed the correlations between the mTOR and P70S6K expression and clinic pathological factors and studied its prognostic role in gastric carcinomas.</p> <p>Methods</p> <p>mTOR and phospho-p70S6K proteins were examined by immunohistochemistry on tissue microarray containing gastric carcinomas (n = 412), adenomas (n = 47) and non-neoplastic mucosa (NNM, n = 197) with a comparison of their expression with clinicopathological parameters of carcinomas.</p> <p>Results</p> <p>There was no difference of mTOR expression between these three tissues (p > 0.05). Cytoplasmic phospho(p)-P706SK was highly expressed in adenoma, compared with ANNMs (p < 0.05), whereas its nuclear expression was lower in gastric carcinomas than gastric adenoma and ANNMs (p < 0.05). These three markers were preferably expressed in the older patients with gastric cancer and intestinal-type carcinoma (p < 0.05). mTOR expression was positively correlated with the cytoplasmic and nuclear expression of p-P70S6K(p < 0.05). Nuclear P70S6K was inversely linked to tumor size, depth of invasion, lymph node metastasis and UICC staging (p < 0.05). Univariate analysis indicated that expression of mTOR and nuclear p-P70S6K was closely linked to favorable prognosis of the carcinoma patients (p < 0.05). Multivariate analysis showed that age, depth of invasion, lymphatic invasion, lymph node metastasis, Lauren's classification and mTOR expression were independent prognostic factors for overall gastric carcinomas (p < 0.05).</p> <p>Conclusion</p> <p>Aberrant expression of p-P70S6K possibly contributes to pathogenesis, growth, invasion and metastasis of gastric carcinomas. It was considered as a promising marker to indicate the aggressive behaviors and prognosis of gastric carcinomas.</p

    Sex-biased transcription enhancement by a 5' tethered Gal4-MOF histone acetyltransferase fusion protein in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In male <it>Drosophila melanogaster</it>, the male specific lethal (MSL) complex is somehow responsible for a two-fold increase in transcription of most X-linked genes, which are enriched for histone H4 acetylated at lysine 16 (H4K16ac). This acetylation requires MOF, a histone acetyltransferase that is a component of the MSL complex. MOF also associates with the non-specific lethal or NSL complex. The MSL complex is bound within active genes on the male X chromosome with a 3' bias. In contrast, the NSL complex is enriched at promoter regions of many autosomal and X-linked genes in both sexes. In this study we have investigated the role of MOF as a transcriptional activator.</p> <p>Results</p> <p>MOF was fused to the DNA binding domain of Gal4 and targeted to the promoter region of UAS-reporter genes in <it>Drosophila</it>. We found that expression of a UAS-red fluorescent protein (DsRed) reporter gene was strongly induced by Gal4-MOF. However, DsRed RNA levels were about seven times higher in female than male larvae. Immunostaining of polytene chromosomes showed that Gal4-MOF co-localized with MSL1 to many sites on the X chromosome in male but not female nuclei. However, in female nuclei that express MSL2, Gal4-MOF co-localized with MSL1 to many sites on polytene chromosomes but DsRed expression was reduced. Mutation of conserved active site residues in MOF (Glu714 and Cys680) reduced HAT activity <it>in vitro </it>and UAS-DsRed activation in <it>Drosophila</it>. In the presence of Gal4-MOF, H4K16ac levels were enriched over UAS-<it>lacZ </it>and UAS-<it>arm-lacZ </it>reporter genes. The latter utilizes the constitutive promoter from the <it>arm </it>gene to drive <it>lacZ </it>expression. In contrast to the strong induction of UAS-DsRed expression, UAS-<it>arm-lacZ </it>expression increased by about 2-fold in both sexes.</p> <p>Conclusions</p> <p>Targeting MOF to reporter genes led to transcription enhancement and acetylation of histone H4 at lysine 16. Histone acetyltransferase activity was required for the full transcriptional response. Incorporation of Gal4-MOF into the MSL complex in males led to a lower transcription enhancement of UAS-<it>DsRed </it>but not UAS-<it>arm-lacZ </it>genes. We discuss how association of Gal4-MOF with the MSL or NSL proteins could explain our results.</p

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Abnormal Dosage Compensation of Reporter Genes Driven by the Drosophila Glass Multiple Reporter (GMR) Enhancer-Promoter

    Get PDF
    In Drosophila melanogaster the male specific lethal (MSL) complex is required for upregulation of expression of most X-linked genes in males, thereby achieving X chromosome dosage compensation. The MSL complex is highly enriched across most active X-linked genes with a bias towards the 3β€² end. Previous studies have shown that gene transcription facilitates MSL complex binding but the type of promoter did not appear to be important. We have made the surprising observation that genes driven by the glass multiple reporter (GMR) enhancer-promoter are not dosage compensated at X-linked sites. The GMR promoter is active in all cells in, and posterior to, the morphogenetic furrow of the developing eye disc. Using phiC31 integrase-mediated targeted integration, we measured expression of lacZ reporter genes driven by either the GMR or armadillo (arm) promoters at each of three X-linked sites. At all sites, the arm-lacZ reporter gene was dosage compensated but GMR-lacZ was not. We have investigated why GMR-driven genes are not dosage compensated. Earlier or constitutive expression of GMR-lacZ did not affect the level of compensation. Neither did proximity to a strong MSL binding site. However, replacement of the hsp70 minimal promoter with a minimal promoter from the X-linked 6-Phosphogluconate dehydrogenase gene did restore partial dosage compensation. Similarly, insertion of binding sites for the GAGA and DREF factors upstream of the GMR promoter led to significantly higher lacZ expression in males than females. GAGA and DREF have been implicated to play a role in dosage compensation. We conclude that the gene promoter can affect MSL complex-mediated upregulation and dosage compensation. Further, it appears that the nature of the basal promoter and the presence of binding sites for specific factors influence the ability of a gene promoter to respond to the MSL complex

    Place preference induced by nucleus accumbens amphetamine is impaired by local blockade of Group II metabotropic glutamate receptors in rats

    Get PDF
    BACKGROUND: The nucleus accumbens (NAc) plays a critical role in amphetamine-produced conditioned place preference (CPP). In previous studies, NAc basal and amphetamine-produced DA transmission was altered by Group II mGluR agents. We tested whether NAc amphetamine CPP depends on Group II mGluR transmission. RESULTS: NAc injections (0.5 ΞΌl/side) of the Group II mGluR antagonist (2 S)- a-ethylglutamic acid (EGLU: 0.01–0.8 ΞΌg but not 0.001 ΞΌg) impaired CPP. The drug did not block the acute locomotor effect of amphetamine. CONCLUSION: Results suggest that Group II mGluRs may be necessary for the establishment of NAc amphetamine-produced CPP. These receptors may also mediate other forms of reward-related learning dependent on this structure

    Clinical Predictors of Immune Reconstitution following Combination Antiretroviral Therapy in Patients from the Australian HIV Observational Database

    Get PDF
    A small but significant number of patients do not achieve CD4 T-cell counts >500 cells/Β΅l despite years of suppressive cART. These patients remain at risk of AIDS and non-AIDS defining illnesses. The aim of this study was to identify clinical factors associated with CD4 T-cell recovery following long-term cART.Patients with the following inclusion criteria were selected from the Australian HIV Observational Database (AHOD): cART as their first regimen initiated at CD4 T-cell count <500 cells/Β΅l, HIV RNA<500 copies/ml after 6 months of cART and sustained for at least 12 months. The Cox proportional hazards model was used to identify determinants associated with time to achieve CD4 T-cell counts >500 cells/Β΅l and >200 cells/Β΅l.501 patients were eligible for inclusion from AHOD (nβ€Š=β€Š2853). The median (IQR) age and baseline CD4 T-cell counts were 39 (32-47) years and 236 (130-350) cells/Β΅l, respectively. A major strength of this study is the long follow-up duration, median (IQR)β€Š=β€Š6.5(3-10) years. Most patients (80%) achieved CD4 T-cell counts >500 cells/Β΅l, but in 8%, this took >5 years. Among the patients who failed to reach a CD4 T-cell count >500 cells/Β΅l, 16% received cART for >10 years. In a multivariate analysis, faster time to achieve a CD4 T-cell count >500 cells/Β΅l was associated with higher baseline CD4 T-cell counts (p<0.001), younger age (pβ€Š=β€Š0.019) and treatment initiation with a protease inhibitor (PI)-based regimen (vs. non-nucleoside reverse transcriptase inhibitor, NNRTI; pβ€Š=β€Š0.043). Factors associated with achieving CD4 T-cell counts >200 cells/Β΅l included higher baseline CD4 T-cell count (p<0.001), not having a prior AIDS-defining illness (pβ€Š=β€Š0.018) and higher baseline HIV RNA (p<0.001).The time taken to achieve a CD4 T-cell count >500 cells/Β΅l despite long-term cART is prolonged in a subset of patients in AHOD. Starting cART early with a PI-based regimen (vs. NNRTI-based regimen) is associated with more rapid recovery of a CD4 T-cell count >500 cells/Β΅l
    • …
    corecore