9,408 research outputs found
Non-Ohmic variable-range hopping transport in one-dimensional conductors
We investigate theoretically the effect of a finite electric field on the
resistivity of a disordered one-dimensional system in the variable-range
hopping regime. We find that at low fields the transport is inhibited by rare
fluctuations in the random distribution of localized states that create
high-resistance ``breaks'' in the hopping network. As the field increases, the
breaks become less resistive. In strong fields the breaks are overrun and the
electron distribution function is driven far from equilibrum. The logarithm of
the resistance initially shows a simple exponential drop with the field,
followed by a logarithmic dependence, and finally, by an inverse square-root
law.Comment: Version accepted to Phys. Rev. Let
Coarse-graining the dynamics of coupled oscillators
We present an equation-free computational approach to the study of the
coarse-grained dynamics of {\it finite} assemblies of {\it non-identical}
coupled oscillators at and near full synchronization. We use coarse-grained
observables which account for the (rapidly developing) correlations between
phase angles and oscillator natural frequencies. Exploiting short bursts of
appropriately initialized detailed simulations, we circumvent the derivation of
closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let
Conditional Targeting of the DNA Repair Enzyme hOGG1 into Mitochondria
Oxidative damage to mitochondrial DNA (mtDNA) has been suggested to be a key factor in the etiologies of many diseases and in the normal process of aging. Although the presence of a repair system to remove this damage has been demonstrated, the mechanisms involved in this repair have not been well defined. In an effort to better understand the physiological role of recombinant 8-oxoguanine DNA glycosylase/apurinic lyase (OGG1) in mtDNA repair, we constructed an expression vector containing the gene for OGG1 downstream of the mitochondrial localization sequence from manganese-superoxide dismutase. This gene construct was placed under the control of a tetracycline-regulated promoter. Transfected cells that conditionally expressed OGG1 in the absence of the tetracycline analogue doxycycline and targeted this recombinant protein to mitochondria were generated. Western blots of mitochondrial extracts from vector- and OGG1-transfected clones with and without doxycycline revealed that removal of doxycycline for 4 days caused an approximate 8-fold increase in the amount of OGG1 protein in mitochondria. Enzyme activity assays and DNA repair studies showed that the doxycycline-dependent recombinant OGG1 is functional. Functional studies revealed that cells containing recombinant OGG1 were more proficient at repairing oxidative damage in their mtDNA, and this increased repair led to increased cellular survival following oxidative stress
Recommended from our members
The Boltysh crater record of rapid vegetation change during the Dan-C2 hyperthermal event
Coarse-grained dynamics of an activity bump in a neural field model
We study a stochastic nonlocal PDE, arising in the context of modelling
spatially distributed neural activity, which is capable of sustaining
stationary and moving spatially-localized ``activity bumps''. This system is
known to undergo a pitchfork bifurcation in bump speed as a parameter (the
strength of adaptation) is changed; yet increasing the noise intensity
effectively slowed the motion of the bump. Here we revisit the system from the
point of view of describing the high-dimensional stochastic dynamics in terms
of the effective dynamics of a single scalar "coarse" variable. We show that
such a reduced description in the form of an effective Langevin equation
characterized by a double-well potential is quantitatively successful. The
effective potential can be extracted using short, appropriately-initialized
bursts of direct simulation. We demonstrate this approach in terms of (a) an
experience-based "intelligent" choice of the coarse observable and (b) an
observable obtained through data-mining direct simulation results, using a
diffusion map approach.Comment: Corrected aknowledgement
Recommended from our members
A complete high resolution record of the Dan-C2 hyperthermal event in the lacustrine sediments of the Boltysh Impact crater
High Resolution X-Ray Micro-CT of Ultra-Thin Wall Space Components
A high resolution micro-CT system has been assembled and is being used to provide optimal characterization for ultra-thin wall space components. The Glenn Research Center NDE Sciences Team, using this CT system, has assumed the role of inspection vendor for the Advanced Stirling Convertor (ASC) project at NASA. This article will discuss many aspects of the development of the CT scanning for this type of component, including CT system overview; inspection requirements; process development, software utilized and developed to visualize, process, and analyze results; calibration sample development; results on actual samples; correlation with optical/SEM characterization; CT modeling; and development of automatic flaw recognition software. Keywords: Nondestructive Evaluation, NDE, Computed Tomography, Imaging, X-ray, Metallic Components, Thin Wall Inspectio
Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis
We show how the Equation-Free approach for multi-scale computations can be
exploited to systematically study the dynamics of neural interactions on a
random regular connected graph under a pairwise representation perspective.
Using an individual-based microscopic simulator as a black box coarse-grained
timestepper and with the aid of simulated annealing we compute the
coarse-grained equilibrium bifurcation diagram and analyze the stability of the
stationary states sidestepping the necessity of obtaining explicit closures at
the macroscopic level. We also exploit the scheme to perform a rare-events
analysis by estimating an effective Fokker-Planck describing the evolving
probability density function of the corresponding coarse-grained observables
- …