578 research outputs found
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?
The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i)
Experimental investigations are under way with ever increasing precision, be it
in the laboratory or by observing outer space. (ii) One desires to test out
alternatives to Einstein's gravitational theory, in particular those of a
gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity.
A clean discussion requires a reflection on the foundations of electrodynamics.
If one bases electrodynamics on the conservation laws of electric charge and
magnetic flux, one finds Maxwell's equations expressed in terms of the
excitation H=(D,H) and the field strength F=(E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is
still no coupling to gravity. Only the constitutive law H= functional(F)
mediates such a coupling. We discuss the different ways of how metric,
nonmetricity, torsion, and curvature can come into play here. Along the way, we
touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld,
Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni),
and find a method for deriving the metric from linear electrodynamics (Toupin,
Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in
Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th
Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al.
(eds.). Springer, Berlin (2000) to be published (Revised version uses
Springer Latex macros; Sec. 6 substantially rewritten; appendices removed;
the list of references updated
Orbital state and magnetic properties of LiV_2 O_4
LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides
because of its heavy fermion like behavior at low temperatures. In this paper
we present results for the orbital state and magnetic properties of LiV_2 O_4
obtained from a combination of density functional theory within the local
density approximation and dynamical mean-field theory (DMFT). The DMFT
equations are solved by quantum Monte Carlo simulations. The trigonal crystal
field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals
cross the Fermi level, with the former being slightly lower in energy and
narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to
an almost localization of one electron per V ion in the a_{1g} orbital, while
the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The
theoretical high-temperature paramagnetic susceptibility chi(T) follows a
Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement
with the experimental results.Comment: 11 pages, 10 figures, 2 table
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
A high-precision rf trap with minimized micromotion for an In+ multiple-ion clock
We present an experiment to characterize our new linear ion trap designed for
the operation of a many-ion optical clock using 115-In^+ as clock ions. For the
characterization of the trap as well as the sympathetic cooling of the clock
ions we use 172-Yb^+. The trap design has been derived from finite element
method (FEM) calculations and a first prototype based on glass-reinforced
thermoset laminates was built. This paper details on the trap manufacturing
process and micromotion measurement. Excess micromotion is measured using
photon-correlation spectroscopy with a resolution of 1.1nm in motional
amplitude, and residual axial rf fields in this trap are compared to FEM
calculations. With this method, we demonstrate a sensitivity to systematic
clock shifts due to excess micromotion of |({\Delta}{\nu}/{\nu})| = 8.5x10^-20.
Based on the measurement of axial rf fields of our trap, we estimate a number
of twelve ions that can be stored per trapping segment and used as an optical
frequency standard with a fractional inaccuracy of \leq 1x10^-18 due to
micromotion.Comment: 19 pages with 14 picture
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
- …