23,190 research outputs found
A porous prolate-spheroidal model for ciliated micro-organisms
A fluid-mechanical model is developed for representing the mechanism of propulsion of a finite ciliated micro-organism having a prolate-spheroidal shape. The basic concept is the representation of the micro-organism by a prolate-spheroidal control surface upon which certain boundary conditions on the tangential and normal fluid velocities are prescribed. Expressions are obtained for the velocity of propulsion, the rate of energy dissipation in the fluid exterior to the cilia layer, and the stream function of the motion. The effect of the shape of the organism upon its locomotion is explored. Experimental streak photographs of the flow around both freely swimming and inert sedimenting Paramecia are presented and good agreement with the theoretical prediction of the streamlines is found
Quantum Cluster Variables via Serre Polynomials
For skew-symmetric acyclic quantum cluster algebras, we express the quantum
-polynomials and the quantum cluster monomials in terms of Serre polynomials
of quiver Grassmannians of rigid modules. As byproducts, we obtain the
existence of counting polynomials for these varieties and the positivity
conjecture with respect to acyclic seeds. These results complete previous work
by Caldero and Reineke and confirm a recent conjecture by Rupel.Comment: minor corrections, reference added, example 4.3 added, 38 page
What drives the dust activity of comet 67P/Churyumov-Gerasimenko?
We use the gravitational instability formation scenario of cometesimals to
derive the aggregate size that can be released by the gas pressure from the
nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances
and different volatile ices. To derive the ejected aggregate sizes, we
developed a model based on the assumption that the entire heat absorbed by the
surface is consumed by the sublimation process of one volatile species. The
calculations were performed for the three most prominent volatile materials in
comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of
the dust aggregates able to escape from the nucleus into space widens when the
comet approaches the Sun and narrows with increasing heliocentric distance,
because the tensile strength of the aggregates decreases with increasing
aggregate size. The activity of CO ice in comparison to H_20 ice is capable to
detach aggregates smaller by approximately one order of magnitude from the
surface. As a result of the higher sublimation rate of CO ice, larger
aggregates are additionally able to escape from the gravity field of the
nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in
radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been
observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7
AU. Furthermore, the model predicts the release of decimeter-sized aggregates
(trail particles) close to the heliocentric distance at which the gas-driven
dust activity vanishes. However, the gas-driven dust activity cannot explain
the presence of particles smaller than ~1 mm in the coma because the high
tensile strength required to detach these particles from the surface cannot be
provided by evaporation of volatile ices. These smaller particles can be
produced for instance by spin-up and centrifugal mass loss of ejected larger
aggregates
Parasitic small-moment-antiferromagnetism and non-linear coupling of hidden order and antiferromagnetism in URu2Si2 observed by Larmor diffraction
We report simultaneous measurements of the distribution of lattice constants
and the antiferromagnetic moment in high-purity URu2Si2, using both Larmor and
conventional neutron diffraction, as a function of temperature and pressure up
to 18 kbar. We establish that the tiny moment in the hidden order (HO) state is
purely parasitic and quantitatively originates from the distribution of lattice
constants. Moreover, the HO and large-moment antiferromagnetism (LMAF) at high
pressure are separated by a line of first-order phase transitions, which ends
in a bicritical point. Thus the HO and LMAF are coupled non-linearly and must
have different symmetry, as expected of the HO being, e.g., incommensurate
orbital currents, helicity order, or multipolar order.Comment: 4 pages, 4 figure
Collinear order in a frustrated three-dimensional spin- antiferromagnet LiCuWO
Magnetic frustration in three dimensions (3D) manifests itself in the
spin- insulator LiCuWO. Density-functional band-structure
calculations reveal a peculiar spin lattice built of triangular planes with
frustrated interplane couplings. The saturation field of 29 T contrasts with
the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature
K. Magnetic order below is collinear with the propagation
vector and an ordered moment of 0.65(4) according to
neutron diffraction data. This reduced ordered moment together with the low
maximum of the magnetic specific heat () pinpoint strong
magnetic frustration in 3D. Collinear magnetic order suggests that quantum
fluctuations play crucial role in this system, where a non-collinear spiral
state would be stabilized classically.Comment: published version with supplemental material merged into the tex
On the susceptibility function of piecewise expanding interval maps
We study the susceptibility function Psi(z) associated to the perturbation
f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a
spectral description of transfer operators. It gives in particular sufficient
conditions which guarantee that Psi(z) is holomorphic in a disc of larger than
one. Although Psi(1) is the formal derivative of the SRB measure of f_t with
respect to t, we present examples satisfying our conditions so that the SRB
measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In
v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5.
In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular
in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for
these examples.Comment: To appear Comm. Math. Phy
Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe_1-x
The Fe isotope effect (Fe-IE) on the transition temperature T_c and the
crystal structure was studied in the Fe chalcogenide superconductor FeSe_1-x by
means of magnetization and neutron powder diffraction (NPD). The substitution
of natural Fe (containing \simeq 92% of ^{56}Fe) by its lighter ^{54}Fe isotope
leads to a shift of T_c of 0.22(5)K corresponding to an Fe-IE exponent of
\alpha_Fe=0.81(15). Simultaneously, a small structural change with isotope
substitution is observed by NDP which may contribute to the total Fe isotope
shift of T_c.Comment: 4 pages, 3 figure
Behavioral genomics: A, bee, C, G, T
Honeybees, termites and ants occupy the 'pinnacle of social evolution' with societies of a complexity that rivals our own. The sequencing of the honeybee genome will provide a strong foundation for studying the genetic basis of complex social behavior
Laser induced electron diffraction: a tool for molecular orbital imaging
We explore the laser-induced ionization dynamics of N2 and CO2 molecules
subjected to a few-cycle, linearly polarized, 800\,nm laser pulse using
effective two-dimensional single active electron time-dependent quantum
simulations. We show that the electron recollision process taking place after
an initial tunnel ionization stage results in quantum interference patterns in
the energy resolved photo-electron signals. If the molecule is initially
aligned perpendicular to the field polarization, the position and relative
heights of the associated fringes can be related to the molecular geometrical
and orbital structure, using a simple inversion algorithm which takes into
account the symmetry of the initial molecular orbital from which the ionized
electron is produced. We show that it is possible to extract inter-atomic
distances in the molecule from an averaged photon-electron signal with an
accuracy of a few percents
- …