504 research outputs found

    Small eta-N scattering lengths favour eta-d and eta-alpha states

    Full text link
    Unstable states of the eta meson and the 3He nucleus predicted using the time delay method were found to be in agreement with a recent claim of eta-mesic 3He states made by the TAPS collaboration. Here, we extend this method to a speculative study of the unstable states occurring in the eta-d and eta-4He elastic scattering. The T-matrix for eta-4He scattering is evaluated within the Finite Rank Approximation (FRA) of few body equations. For the evaluation of time delay in the eta-d case, we use a parameterization of an existing Faddeev calculation and compare the results with those obtained from FRA. With an eta-N scattering length, aηN=(0.42,0.34)a_{\eta N} = (0.42, 0.34) fm, we find an eta-d unstable bound state around -16 MeV, within the Faddeev calculation. A similar state within the FRA is found for a low value of aηNa_{\eta N}, namely, aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm. The existence of an eta-4He unstable bound state close to threshold is hinted by aηN=(0.28,0.19)a_{\eta N} = (0.28, 0.19) fm, but is ruled out by large scattering lengths.Comment: 21 pages, LaTex, 7 Figure

    Evidence of Pentaquark States from K+ N Scattering Data?

    Full text link
    Motivated by the recent experimental evidence of the exotic B = S = +1 baryonic state Theta(1540), we examine the older existing data on K+ N elastic scattering through the time delay method. We find positive peaks in time delay around 1.545 and 1.6 GeV in the D03 and P01 partial waves of K+ N scattering respectively, in agreement with experiments. We also find an indication of the J=3/2 Theta* spin-orbit partner to the Theta, in the P03 partial wave at 1.6 GeV. We discuss the pros and contras of these findings in support of the interpretation of these peaks as possible exotics.Comment: 10 pages, 4 figure

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late

    Quantum reflection and dwell times of metastable states

    Full text link
    The concept of phase and dwell times used in tunneling is extended to quantum collisions to derive a relation between the phase and dwell time delays in scattering. This relation can be used to remove the near threshold s-wave singularities in the Wigner-Eisenbud delay times and amounts to an extension of the concept of quantum reflection to strong interactions. Dwell time delay emerges as the quantity which gives the correct behaviour of the density of states of a metastable state at all energies. This fact is demonstrated by investigating some recently found metastable states of mesic-nuclei.Comment: 10 pages, 2 figure

    Breit Equation with Form Factors in the Hydrogen Atom

    Full text link
    The Breit equation with two electromagnetic form-factors is studied to obtain a potential with finite size corrections. This potential with proton structure effects includes apart from the standard Coulomb term, the Darwin term, retarded potentials, spin-spin and spin-orbit interactions corresponding to the fine and hyperfine structures in hydrogen atom. Analytical expressions for the hyperfine potential with form factors and the subsequent energy levels including the proton structure corrections are given using the dipole form of the form factors. Numerical results are presented for the finite size corrections in the 1S and 2S hyperfine splittings in the hydrogen atom, the Sternheim observable D21D_{21} and the 2S and 2P hyperfine splittings in muonic hydrogen. Finally, a comparison with some other existing methods in literature is presented.Comment: 24 pages, Latex, extended version, title change

    Hidden evidence of non-exponential nuclear decay

    Full text link
    The framework to describe natural phenomena at their basics being quantum mechanics, there exist a large number of common global phenomena occurring in different branches of natural sciences. One such global phenomenon is spontaneous quantum decay. However, its long time behaviour is experimentally poorly known. Here we show, that by combining two genuine quantum mechanical results, it is possible to infer on this large time behaviour, directly from data. Specifically, we find evidence for non-exponential behaviour of alpha decay of 8Be at large times from experiments.Comment: 12 pages LaTex, 3 figure

    The weak strangeness production reaction pn→pΛpn \to p\Lambda in a one-boson-exchange model

    Full text link
    The weak production of Lambdas in nucleon-nucleon scattering is studied in a meson-exchange framework. The weak transition operator for the NN→NΛNN \to N \Lambda reaction is identical to a previously developed weak strangeness-changing transition potential ΛN→NN\Lambda N \to NN that describes the nonmesonic decay of hypernuclei. The initial NNNN and final YNYN state interaction has been included by using realistic baryon-baryon forces that describe the available elastic scattering data. The total and differential cross sections as well as the parity-violating asymmetry are studied for the reaction pn→pΛpn \to p\Lambda. These observables are found to be sensitive to the choice of the strong interaction potential and the structure of the weak transition potential.Comment: 25 pages, 8 postscript figures. Submitted to Phys. Rev.

    Asymmetry to symmetry transition of Fano line-shape: Analytical derivation

    Full text link
    An analytical derivation of Fano line-shape asymmetry ratio has been presented here for a general case. It is shown that Fano line-shape becomes less asymmetric as \q is increased and finally becomes completely symmetric in the limiting condition of q equal to infinity. Asymmetry ratios of Fano line-shapes have been calculated and are found to be in good consonance with the reported expressions for asymmetry ratio as a function of Fano parameter. Application of this derivation is also mentioned for explanation of asymmetry to symmetry transition of Fano line-shape in quantum confined silicon nanostructures.Comment: 3 figures, Latex files, Theoretica
    • …
    corecore