162 research outputs found
Introduction to research topic – binocular rivalry: a gateway to studying consciousness
In 1593, Neapolitan polymath Giambattista della Porta publicly
lamented that he was unable to improve his impressive productivity
(he had published in areas as diverse as cryptography,
hydraulics, pharmacology, optics, and classic fiction). Della
Porta was trying to read two books simultaneously by placing
both volumes side-by-side, and using each eye independently. To
his great surprise, his setup allowed him to only read one book at
a time. This discovery arguably marks the first written account
of binocular rivalry (Wade, 2000) – a perceptual phenomenon
that more than 400 years later still both serves to intrigue as
well as to illuminate the limits of scientific knowledge. At first
glance, binocular rivalry is an oddball. In every day vision, our
eyes receive largely matching views of the world. The brain combines
the two images into a cohesive scene, and concurrently,
perception is stable. However, when showing two very different
images (such as two different books) to each eye, the brain
resolves the conflict by adopting a “diplomatic” strategy. Rather
than mixing the views of the two eyes into an insensible visual
percept, observers perceive a dynamically changing series of
perceptual snapshots, with one eye’s view dominating for a few
seconds before being replaced by its rival from the other eye.
With prolonged viewing of a rivalrous stimulus, one inevitably
experiences a sequence of subjective perceptual reversals, separated
by random time intervals, and this process continues for
as long as the sensory conflict is present
Responses of Neurons in Lateral Intraparietal Area Depend on Stimulus-Associated Reward During Binocular Flash Suppression
Discovering neural correlates of subjective perception and dissociating them from sensory input has fascinated neuroscientists for a long time. Bistable and multistable perception phenomena have exhibited great experimental potential to address this question. Here, we performed electrophysiological recordings from single neurons in lateral intraparietal area (LIP) of rhesus macaques during stimulus and perceptual transitions induced by binocular flash suppression (BFS). LIP neurons demonstrated transient bursts of activity after stimulus presentation and stimulus or perceptual switches but only a minority of cells demonstrated stimulus and perceptual selectivity. To enhance LIP neural selectivity, we performed a second experiment in which the competing stimuli were associated with asymmetric rewards. We found that transient and sustained activities substantially increased while the proportion of stimulus selective neurons remained approximately the same, albeit with increased selectivity magnitude. In addition, we observed mild increases in the proportion of perceptually selective neurons which also showed increase magnitude of selectivity. Importantly, the increased selectivity of cells after the reward manipulation was not directly reflecting the reward size per se but an enhancement in stimulus differentiation. Based on our results, we conjecture that LIP contributes to perceptual transitions and serves a modulatory role in perceptual selection taking into account the stimulus behavioral value
Scene regularity interacts with individual biases to modulate perceptual stability
Sensory input is inherently ambiguous but our brains achieve remarkable perceptual stability. Prior experience and knowledge of the statistical properties of the world are thought to play a key role in the stabilization process. Individual differences in responses to ambiguous input and biases towards one or the other interpretation could modulate the decision mechanism for perception. However, the role of perceptual bias and its interaction with stimulus spatial properties such as regularity and element density remain to be understood. To this end, we developed novel bi-stable moving visual stimuli in which perception could be parametrically manipulated between two possible mutually exclusive interpretations: transparently or coherently moving. We probed perceptual stability across three composite stimulus element density levels with normal or degraded regularity using a factorial design. We found that increased density led to the amplification of individual biases and consequently to a stabilization of one interpretation over the alternative. This effect was reduced for degraded regularity, demonstrating an interaction between density and regularity. To understand how prior knowledge could be used by the brain in this task, we compared the data with simulations coming from four different hierarchical models of causal inference. These models made different assumptions about the use of prior information by including conditional priors that either facilitated or inhibited motion direction integration. An architecture that included a prior inhibiting motion direction integration consistently outperformed the others. Our results support the hypothesis that direction integration based on sensory likelihoods maybe the default processing mode with conditional priors inhibiting integration employed in order to help motion segmentation and transparency perception
Functional network antagonism and consciousness
Spontaneous brain activity changes across states of consciousness. A particular consciousness-mediated configuration is the anticorrelations between the default mode network and other brain regions. What this antagonistic organization implies about consciousness to date remains inconclusive. In this Perspective Article, we propose that anticorrelations are the physiological expression of the concept of segregation, namely the brain’s capacity to show selectivity in the way areas will be functionally connected. We postulate that this effect is mediated by the process of neural inhibition, by regulating global and local inhibitory activity. While recognizing that this effect can also result from other mechanisms, neural inhibition helps the understanding of how network metastability is affected after disrupting local and global neural balance. In combination with relevant theories of consciousness, we suggest that anticorrelations are a physiological prior that can work as a marker of preserved consciousness. We predict that if the brain is not in a state to host anticorrelations, then most likely the individual does not entertain subjective experience. We believe that this link between anticorrelations and the underlying physiology will help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected
Comparing the Feature Selectivity of the Gamma-Band of the Local Field Potential and the Underlying Spiking Activity in Primate Visual Cortex
The local field potential (LFP), comprised of low-frequency extra-cellular voltage fluctuations, has been used extensively to study the mechanisms of brain function. In particular, oscillations in the gamma-band (30–90 Hz) are ubiquitous in the cortex of many species during various cognitive processes. Surprisingly little is known about the underlying biophysical processes generating this signal. Here, we examine the relationship of the local field potential to the activity of localized populations of neurons by simultaneously recording spiking activity and LFP from the primary visual cortex (V1) of awake, behaving macaques. The spatial organization of orientation tuning and ocular dominance in this area provides an excellent opportunity to study this question, because orientation tuning is organized at a scale around one order of magnitude finer than the size of ocular dominance columns. While we find a surprisingly weak correlation between the preferred orientation of multi-unit activity and gamma-band LFP recorded on the same tetrode, there is a strong correlation between the ocular preferences of both signals. Given the spatial arrangement of orientation tuning and ocular dominance, this leads us to conclude that the gamma-band of the LFP seems to sample an area considerably larger than orientation columns. Rather, its spatial resolution lies at the scale of ocular dominance columns
Trajectories of charged particles trapped in Earth's magnetic field
I outline the theory of relativistic charged-particle motion in the
magnetosphere in a way suitable for undergraduate courses. I discuss particle
and guiding center motion, derive the three adiabatic invariants associated
with them, and present particle trajectories in a dipolar field. I provide
twelve computational exercises that can be used as classroom assignments or for
self-study. Two of the exercises, drift-shell bifurcation and Speiser orbits,
are adapted from active magnetospheric research. The Python code provided in
the supplement can be used to replicate the trajectories and can be easily
extended for different field geometries.Comment: 10 pages, 7 figures. Submitted to American Journal of Physic
Estimating average single-neuron visual receptive field sizes by fMRI
The noninvasive estimation of neuronal receptive field (RF) properties in vivo allows a detailed understanding of brain organization as well as its plasticity by longitudinal following of potential changes. Visual RFs measured invasively by electrophysiology in animal models have traditionally provided a great extent of our current knowledge about the visual brain and its disorders. Voxel-based estimates of population RF (pRF) by functional magnetic resonance imaging (fMRI) in humans revolutionized the field and have been used extensively in numerous studies. However, current methods cannot estimate single-neuron RF sizes as they reflect large populations of neurons with individual RF scatter. Here, we introduce an approach to estimate RF size using spatial frequency selectivity to checkerboard patterns. This method allowed us to obtain noninvasive, average single-neuron RF estimates over a large portion of human early visual cortex. These estimates were significantly smaller compared with prior pRF methods. Furthermore, fMRI and electrophysiology experiments in nonhuman primates demonstrated an exceptionally good match, validating the approach
Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex
Extracellular voltage fluctuations (local field potentials, LFPs) reflecting neural mass action are ubiquitous across species and brain regions. Numerous studies have characterized the properties of LFP signals in the cortex to study sensory and motor computations as well as cognitive processes like attention, perception and memory. In addition, its extracranial counterpart – the electroencephalogram – is widely used in clinical applications. However, the link between LFP signals and the underlying activity of local populations of neurons remains largely elusive. Here, we review recent work elucidating the relationship between spiking activity of local neural populations and LFP signals. We focus on oscillations in the gamma-band (30–90 Hz) of the LFP in the primary visual cortex (V1) of the macaque that dominate during visual stimulation. Given that in area V1 much is known about the properties of single neurons and the cortical architecture, it provides an excellent opportunity to study the mechanisms underlying the generation of the LFP
Progressive tau aggregation does not alter functional brain network connectivity in seeded hTau.P301L mice
Progressive accumulation of hyperphosphorylated tau is a hallmark of various neurodegenerative disorders including Alzheimer's disease. However, to date, the functional effects of tau pathology on brain network connectivity remain poorly understood. To directly interrogate the impact of tau pathology on functional brain connectivity, we conducted a longitudinal experiment in which we monitored a fibril-seeded hTau.P301L mouse model using correlative whole-brain microscopy and resting-state functional MRI. Despite a progressive aggravation of tau pathology across the brain, the major resting-state networks appeared unaffected up to 15 weeks after seeding. Targeted analyses also showed that the connectivity of regions with high levels of hyperphosphorylated tau was comparable to that observed in controls. In line with the ostensible retention of connectivity, no behavioural changes were detected between seeded and control hTau.P301L mice as determined by three different paradigms. Our data indicate that seeded tau pathology, with accumulation of tau aggregates throughout different regions of the brain, does not alter functional connectivity or behaviour in this mouse model. Additional correlative functional studies on different mouse models should help determine whether this is a generalizable trait of tauopathies
- …