136 research outputs found

    Functional network antagonism and consciousness

    Get PDF
    Spontaneous brain activity changes across states of consciousness. A particular consciousness-mediated configuration is the anticorrelations between the default mode network and other brain regions. What this antagonistic organization implies about consciousness to date remains inconclusive. In this Perspective Article, we propose that anticorrelations are the physiological expression of the concept of segregation, namely the brain’s capacity to show selectivity in the way areas will be functionally connected. We postulate that this effect is mediated by the process of neural inhibition, by regulating global and local inhibitory activity. While recognizing that this effect can also result from other mechanisms, neural inhibition helps the understanding of how network metastability is affected after disrupting local and global neural balance. In combination with relevant theories of consciousness, we suggest that anticorrelations are a physiological prior that can work as a marker of preserved consciousness. We predict that if the brain is not in a state to host anticorrelations, then most likely the individual does not entertain subjective experience. We believe that this link between anticorrelations and the underlying physiology will help not only to comprehend how consciousness happens, but also conceptualize effective interventions for treating consciousness disorders in which anticorrelations seem particularly affected

    A Distributed Networked Approach for Fault Detection of Large-scale Systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    Fault diagnosis for uncertain networked systems

    Get PDF
    Fault diagnosis has been at the forefront of technological developments for several decades. Recent advances in many engineering fields have led to the networked interconnection of various systems. The increased complexity of modern systems leads to a larger number of sources of uncertainty which must be taken into consideration and addressed properly in the design of monitoring and fault diagnosis architectures. This chapter reviews a model-based distributed fault diagnosis approach for uncertain nonlinear large-scale networked systems to specifically address: (a) the presence of measurement noise by devising a filtering scheme for dampening the effect of noise; (b) the modeling of uncertainty by developing an adaptive learning scheme; (c) the uncertainty issues emerging when considering networked systems such as the presence of delays and packet dropouts in the communication networks. The proposed architecture considers in an integrated way the various components of complex distributed systems such as the physical environment, the sensor level, the fault diagnosers, and the communication networks. Finally, some actions taken after the detection of a fault, such as the identification of the fault location and its magnitude or the learning of the fault function, are illustrated

    Functional MRI in Awake Unrestrained Dogs

    Get PDF
    Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF
    Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience

    Investigating the Neural Correlates of Visual Perception

    No full text
    corecore