43 research outputs found
Thermodynamics of C incorporation on Si(100) from ab initio calculations
We study the thermodynamics of C incorporation on Si(100), a system where
strain and chemical effects are both important. Our analysis is based on
first-principles atomistic calculations to obtain the important lowest energy
structures, and a classical effective Hamiltonian which is employed to
represent the long-range strain effects and incorporate the thermodynamic
aspects. We determine the equilibrium phase diagram in temperature and C
chemical potential, which allows us to predict the mesoscopic structure of the
system that should be observed under experimentally relevant conditions.Comment: 5 pages, 3 figure
Simulations of composite carbon films with nanotube inclusions
We study the interfacial structure, stability, and elastic properties of
composite carbon films containing nanotubes. Our Monte Carlo simulations show
that Van der Waals forces play a vital role in shaping up the interfacial
geometry, producing a curved graphitic wall surrounding the tubes. The most
stable structures are predicted to have intermediate densities, high
anisotropies, and increased elastic moduli compared to pure amorphous carbon
films.Comment: 3 pages, 3 figures, to appear in Appl. Phys. Let
Energetics and stability of nanostructured amorphous carbon
Monte Carlo simulations, supplemented by ab initio calculations, shed light
into the energetics and thermodynamic stability of nanostructured amorphous
carbon. The interaction of the embedded nanocrystals with the host amorphous
matrix is shown to determine in a large degree the stability and the relative
energy differences among carbon phases. Diamonds are stable structures in
matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated
networks. Other sp^2-bonded structures are metastable.Comment: 11 pages, 7 figure
Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon
Tight-binding molecular dynamics simulations shed light into the fracture
mechanisms and the ideal strength of tetrahedral amorphous carbon and of
nanocomposite carbon containing diamond crystallites, two of the hardest
materials. It is found that fracture in the nanocomposites, under tensile or
shear load, occurs inter-grain and so their ideal strength is similar to the
pure amorphous phase. The onset of fracture takes place at weakly bonded sp^3
sites in the amorphous matrix. On the other hand, the nanodiamond inclusions
significantly enhance the elastic moduli, which approach those of diamond.Comment: 6 pages, 4 figure
Magic Numbers of Silicon Clusters
A structural model for intermediate sized silicon clusters is proposed that
is able to generate unique structures without any dangling bonds. This
structural model consists of bulk-like core of five atoms surrounded by
fullerene-like surface. Reconstruction of the ideal fullerene geometry results
in the formation of crown atoms surrounded by -bonded dimer pairs. This
model yields unique structures for \Si{33}, \Si{39}, and \Si{45} clusters
without any dangling bonds and hence explains why these clusters are least
reactive towards chemisorption of ammonia, methanol, ethylene, and water. This
model is also consistent with the experimental finding that silicon clusters
undergo a transition from prolate to spherical shapes at \Si{27}. Finally,
reagent specific chemisorption reactivities observed experimentally is
explained based on the electronic structures of the reagents.Comment: 4 pages + 3 figures (postscript files after \end{document}
Structural properties of amorphous hydrogenated carbon. IV. A molecular-dynamics investigation and comparison to experiments
Hydrogenated amorphous carbon structures, a-C:H, with densities of 1.8 and 2.0 g/cm3, have been generated by semiempirical density-functions (DF) molecular-dynamics (MD) rapid cooling of a liquid phase of 128 carbon and 64 hydrogen atoms within periodically arranged cubic supercells. The electronic bonding properties of the model structures are analyzed within a local-orbital description. The structural properties are compared to relevant statistical and diffraction data obtained by neutron scattering and NMR in order to achieve a fundamental understanding of structure-related properties on the molecular level of chemical bonding
Nanostructural characterization of amorphous diamondlike carbon films
Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film
Shaping the composition profiles in heteroepitaxial quantum dots: Interplay of thermodynamic and kinetic effects
Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si) component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge) component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role
Total-energy and entropy considerations as a probe of chemical order in amorphous silicon carbide
Total energy calculations of various atomic configurations, carried out within the pseudopotential-density-functional (PDF) formalism, show that partial chemical ordering is by far the most favored phase in amorphous silicon-carbon alloys. The random phase, on the other hand, is the least favored configuration. Configurational entropy contributions to the free energy are not able to reverse this picture, yielding an exceedingly high transition temperature