43 research outputs found

    Precise Measurements of Branching Fractions for Ds+D_s^+ Meson Decays to Two Pseudoscalar Mesons

    Get PDF
    We measure the branching fractions for seven Ds+D_{s}^{+} two-body decays to pseudo-scalar mesons, by analyzing data collected at s=4.178∼4.226\sqrt{s}=4.178\sim4.226 GeV with the BESIII detector at the BEPCII collider. The branching fractions are determined to be B(Ds+→K+η′)=(2.68±0.17±0.17±0.08)×10−3\mathcal{B}(D_s^+\to K^+\eta^{\prime})=(2.68\pm0.17\pm0.17\pm0.08)\times10^{-3}, B(Ds+→η′π+)=(37.8±0.4±2.1±1.2)×10−3\mathcal{B}(D_s^+\to\eta^{\prime}\pi^+)=(37.8\pm0.4\pm2.1\pm1.2)\times10^{-3}, B(Ds+→K+η)=(1.62±0.10±0.03±0.05)×10−3\mathcal{B}(D_s^+\to K^+\eta)=(1.62\pm0.10\pm0.03\pm0.05)\times10^{-3}, B(Ds+→ηπ+)=(17.41±0.18±0.27±0.54)×10−3\mathcal{B}(D_s^+\to\eta\pi^+)=(17.41\pm0.18\pm0.27\pm0.54)\times10^{-3}, B(Ds+→K+KS0)=(15.02±0.10±0.27±0.47)×10−3\mathcal{B}(D_s^+\to K^+K_S^0)=(15.02\pm0.10\pm0.27\pm0.47)\times10^{-3}, B(Ds+→KS0π+)=(1.109±0.034±0.023±0.035)×10−3\mathcal{B}(D_s^+\to K_S^0\pi^+)=(1.109\pm0.034\pm0.023\pm0.035)\times10^{-3}, B(Ds+→K+π0)=(0.748±0.049±0.018±0.023)×10−3\mathcal{B}(D_s^+\to K^+\pi^0)=(0.748\pm0.049\pm0.018\pm0.023)\times10^{-3}, where the first uncertainties are statistical, the second are systematic, and the third are from external input branching fraction of the normalization mode Ds+→K+K−π+D_s^+\to K^+K^-\pi^+. Precision of our measurements is significantly improved compared with that of the current world average values

    Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation

    Get PDF
    Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.Marc Beyer... Timothy Sadlon...Simon C Barry... et al

    SATB1 is Correlated with Progression and Metastasis of Breast Cancers: A Meta-Analysis

    No full text
    Background/Aims: Several researches have evaluated the significance of SATB1 (Special AT-rich sequence binding protein 1) expression in breast cancers (BCs), but the results have been disputed, especially in the aspects of clinicopathological features and prognosis. Therefore, our study aimed to use a meta-analysis to summarize the clinical and prognostic relevance of SATB1 gene expression in BCs. Methods: A literature search of PubMed, EMBASE, Cochrane library, Chinese Wanfang and CNKI was performed to identify eligible studies. Ten studies total, comprising 5,185 patients (1,699 SATB1-positive and 3,486 SATB1-negative), were enrolled in our study, which was performed using Revman5.3 Software and Stata11.0 Software. Results: This meta-analysis showed that the expression of SATB1 was significantly higher in breast cancer than in normal tissues (OR = 12.28; 95%CI = 6.01-25.09), and was statistically related to several clinicopathological parameters, including lymph node metastasis (OR = 1.55, 95%CI = 1.01-2.39) and Tumor Node Metastasis(TNM) stage (OR = 0.35, 95%CI = 0.22-0.56). However, the level of SATB1 was not statistically associated with the age (OR = 1.13, 95%CI = 0.87-1.46), tumour size (OR = 0.72, 95%CI = 0.44-1.19), estrogen receptor (OR = 0.78, 95%CI = 0.55-1.09), progesterone receptor (OR = 0.64, 95%CI = 0.32-1.29), HER2 status (OR=1.98, 95%CI = 0.74-5.30), and histological type (OR = 0.49, 95%CI = 0.22-1.11). Conclusion: High expression of SATB1 was significantly correlated with tumourigenesis and metastasis of BCs, indicating poor prognosis for patients. SATB1 could serve as a potential marker for detection and prognosis evaluation of breast cancers

    Engineering and systems-level analysis of Pseudomonas chlororaphis for production of phenazine-1-carboxamide using glycerol as the cost-effective carbon source

    No full text
    Abstract Background Glycerol, an inevitable byproduct of biodiesel, has become an attractive feedstock for the production of value-added chemicals due to its availability and low price. Pseudomonas chlororaphis HT66 can use glycerol to synthesize phenazine-1-carboxamide (PCN), a phenazine derivative, which is strongly antagonistic to fungal phytopathogens. A systematic understanding of underlying mechanisms for the PCN overproduction will be important for the further improvement and industrialization. Results We constructed a PCN-overproducing strain (HT66LSP) through knocking out three negative regulatory genes, lon, parS, and prsA in HT66. The strain HT66LSP produced 4.10 g/L of PCN with a yield of 0.23 (g/g) from glycerol, which was of the highest titer and the yield obtained among PCN-producing strains. We studied gene expression, metabolomics, and dynamic 13C tracer in HT66 and HT66LSP. In response to the phenotype changes, the transcript levels of phz biosynthetic genes, which are responsible for PCN biosynthesis, were all upregulated in HT66LSP. Central carbon was rerouted to the shikimate pathway, which was shown by the modulation of specific genes involved in the lower glycolysis, the TCA cycle, and the shikimate pathway, as well as changes in abundances of intracellular metabolites and flux distribution to increase the precursor availability for PCN biosynthesis. Moreover, dynamic 13C-labeling experiments revealed that the presence of metabolite channeling of 3-phosphoglyceric acid to phosphoenolpyruvate and shikimate to trans-2,3-dihydro-3-hydroxyanthranilic acid in HT66LSP could enable high-yielding synthesis of PCN. Conclusions The integrated analysis of gene expression, metabolomics, and dynamic 13C tracer enabled us to gain a more in-depth insight into complex mechanisms for the PCN overproduction. This study provides important basis for further engineering P. chlororaphis for high PCN production and efficient glycerol conversion

    SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production

    No full text
    SARS-CoV-2 is highly pathogenic in humans and poses a great threat to public health worldwide. Clinical data shows a disturbed type I interferon (IFN) response during the virus infection. In this study, we discovered that the nucleocapsid (N) protein of SARS-CoV-2 plays an important role in the inhibition of interferon beta (IFN-β) production. N protein repressed IFN-β production induced by poly(I:C) or upon Sendai virus (SeV) infection. We noted that N protein also suppressed IFN-β production, induced by several signaling molecules downstream of the retinoic acid-inducible gene I (RIG-I) pathway, which is the crucial pattern recognition receptor (PRR) responsible for identifying RNA viruses. Moreover, our data demonstrated that N protein interacted with the RIG-I protein through the DExD/H domain, which has ATPase activity and plays an important role in the binding of immunostimulatory RNAs. These results suggested that SARS-CoV-2 N protein suppresses the IFN-β response through targeting the initial step, potentially the cellular PRR–RNA-recognition step in the innate immune pathway. Therefore, we propose that the SARS-CoV-2 N protein represses IFN-β production by interfering with RIG-I

    The Peach (<i>Prunus persica</i>) <i>CBL</i> and <i>CIPK</i> Family Genes: Protein Interaction Profiling and Expression Analysis in Response to Various Abiotic Stresses

    No full text
    The plant calcineurin B-like protein–CBL interacting protein kinase (CBL–CIPK) signaling pathway is a Ca2+-related signaling pathway that responds strongly to both biological and abiotic environmental stimuli. This study identified eight CBL and eighteen CIPK genes from peach for the first time. Their basic properties and gene structure were analyzed, and the CBL and CIPK members from Arabidopsis and apple were combined to study their evolutionary relationships. Using RT-qPCR and RNA-seq data, we detected the expression patterns of PprCBLs and PprCIPKs in different tissues and fruit development stages of peach. Among them, the expression levels of PprCBL1 and PprCIPK18 were stable in various tissues and stages. The expression patterns of other members showed specificity between cultivars and developmental stages. By treating shoots with drought and salt stress simulated using PEG6000 and NaCl, it was found that PprCIPK3, PprCIPK6, PprCIPK15 and PprCIPK16 were strongly responsive to salt stress, and PprCIPK3, PprCIPK4, PprCIPK10, PprCIPK14, PprCIPK15, PprCIPK16 and PprCIPK18 were sensitive to drought stress. Three genes, PprCIPK3, PprCIPK15 and PprCIPK16, were sensitive to both salt and drought stress. We cloned four PprCBL and several PprCIPK genes and detected their interaction by yeast two-hybrid assay (Y2H). The results of Y2H show not only the evolutionary conservation of the interaction network of CBL–CIPK but also the specificity among different species. In conclusion, CBL and CIPK genes are important in peach and play an important role in the response to various abiotic stresses
    corecore