16 research outputs found

    The androgen receptor CAG repeat polymorphism and modification of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

    Get PDF
    INTRODUCTION: The androgen receptor (AR) gene exon 1 CAG repeat polymorphism encodes a string of 9-32 glutamines. Women with germline BRCA1 mutations who carry at least one AR allele with 28 or more repeats have been reported to have an earlier age at onset of breast cancer. METHODS: A total of 604 living female Australian and British BRCA1 and/or BRCA2 mutation carriers from 376 families were genotyped for the AR CAG repeat polymorphism. The association between AR genotype and disease risk was assessed using Cox regression. AR genotype was analyzed as a dichotomous covariate using cut-points previously reported to be associated with increased risk among BRCA1 mutation carriers, and as a continuous variable considering smaller allele, larger allele and average allele size. RESULTS: There was no evidence that the AR CAG repeat polymorphism modified disease risk in the 376 BRCA1 or 219 BRCA2 mutation carriers screened successfully. The rate ratio associated with possession of at least one allele with 28 or more CAG repeats was 0.74 (95% confidence interval 0.42-1.29; P = 0.3) for BRCA1 carriers, and 1.12 (95% confidence interval 0.55-2.25; P = 0.8) for BRCA2 carriers. CONCLUSION: The AR exon 1 CAG repeat polymorphism does not appear to have an effect on breast cancer risk in BRCA1 or BRCA2 mutation carriers

    RAD52 Y415X truncation polymorphism and epithelial ovarian cancer risk in Australian women

    No full text
    The RAD52 gene is involved in the homologous recombination repair pathway and is a plausible candidate ovarian cancer predisposition gene. We undertook a case-control comparison of 508 epithelial ovarian cancer cases (91 low malignant potential and 417 invasive) and 298 healthy controls to assess the RAD52 Y415X polymorphism as a risk factor for epithelial ovarian cancer in Australian women. Heterozygote frequencies of 2.6 and 4% were observed among cases and controls, respectively. The risk estimate was 0.55 (95%CI 0.24-1.24), suggesting that the RAD52 Y415X polymorphism is not associated with epithelial ovarian cancer in Australian women. (C) 2004 Elsevier Ireland Ltd. All rights reserved

    Genetic forms of primary aldosteronism

    No full text
    Numerous recent reports suggest that primary aldosteronism (PAL) is much more common than previously thought, accounting for 5-10% of hypertensive patients with most being normokalaemic. A recent Framingham study analysis has revealed the aldosterone/renin ratio, a marker of autonomous aldosterone production, to be an independent predictor of blood pressure progression and hypertension development. The description of two familial forms and Framingham results showing significant heritability of the aldosterone/renin ratio suggests a genetic basis for PAL. One rare, glucocorticoid-remediable, familial form (familial hyperaldosteronism type I [FH-I]), is caused by an adrenocorticotropic hormone-regulated, hybrid CYP11B1/CYP11B2 gene mutation and is associated with a wide spectrum of phenotypic expression from normotension to severe hypertension, which may cause early death from stroke, but is readily controlled by giving low-dose glucocorticoids. Identification of the underlying mutation has permitted development of genetic tests, greatly facilitating diagnosis. Familial hyperaldosteronism type II (FH-II), which is not glucocorticoid-remediable and not associated with the hybrid gene mutation, is at least five times more common than FH-I. Linkage studies have implicated a locus at chromosome 7p22 in three of five families with FH-II so far studied, and candidate genes within the linked locus are currently being closely examined. Since FH-II is clinically indistinguishable from apparently non-familial PAL, mutations causing FH-II are likely to be operative in the wider PAL population. As has occurred with FH-I, the search for its genetic basis brings with it the hope of new, more streamlined genetic methods of detection and a better understanding of its pathophysiology

    Double-Strand Break Repair Gene Polymorphisms and Risk of Breast or Ovarian Cancer

    No full text
    Deficiencies in DNA repair have been hypothesized to increase cancer risk and excess cancer incidence is a feature of inherited diseases caused by defects in DNA damage recognition and repair. We investigated, using a case-control design, whether the double-strand break repair gene polymorphisms RAD51 5' untranslated region -135 G > C, XRCC2 R188H G > A, and XRCC3 T241M C > T were associated with risk of breast or ovarian cancer in Australian women. Sample sets included 1,456 breast cancer cases and 793 age-matched controls ages under 60 years of age, 549 incident ovarian cancer cases, and 335 controls of similar age distribution. For the total sample and the subsample of Caucasian women, there were no significant differences in genotype distribution between breast cancer cases and controls or between ovarian cancer cases and combined control groups. The crude odds ratios (OR) and 95% confidence intervals (95% CI) associated with the RAD51 GC/CC genotype frequency was OR, 1.10; 95% CI, 0.80-1.41 for breast cancer and OR, 1.22; 95% CI, 0.92-1.62 for ovarian cancer. Similarly, there were no increased risks associated with the XRCC2 GA/AA genotype (OR, 0.98; 95% CI, 0.76-1.26 for breast cancer and OR, 0.93; 95% CI, 0.69-1.25 for ovarian cancer) or the XRCC3 CT/TT genotype (OR, 0.92; 95% Cl, 0.77-1.10 for breast cancer and OR, 0.87; 95% CI, 0.71-1.08 for ovarian cancer). Results were little changed after adjustment for age and other measured risk factors. Although there was little statistical power to detect modest increases in risk for the homozygote variant genotypes, particularly for the rare RAD51 and XRCC2 variants, the data suggest that none of these variants play a major role in the etiology of breast or ovarian cancer

    Association between apolipoprotein E epsilon 4 and neuropsychiatric symptoms during interferon alpha treatment for chronic hepatitis C

    No full text
    Neuropsychiatric complications are common in patients with chronic hepatitis C undergoing treatment with interferon alpha. These side effects include alterations of mood, cognition, and neuroendocrine function and are unpredictable. In a number of neurological disorders characterized by neuropsychiatric symptoms and cognitive dysfunction, inheritance of an apolipoprotein E (APOE) epsilon4 allele is associated with adverse neuropsychiatric outcomes. The authors present evidence that the APOE genotype may influence a patient's neuropsychiatric response to interferon alpha treatment. The inheritance of APOE genotypes was examined in 110 patients with chronic hepatitis C treated with interferon alpha. A retrospective investigation was conducted by assessing the rates of psychiatric referral and neuropsychiatric symptoms experienced during treatment along with other complaints indicating psychological distress. A highly statistically significant association was seen between APOE genotypes and interferon-induced neuropsychiatric symptoms. Patients with an epsilon4 allele were more likely to be referred to a psychiatrist and had more neuropsychiatric symptoms during antiviral treatment than those without an epsilon4 allele. Additionally, patients with an epsilon4 allele were more likely to experience irritability or anger and anxiety or other mood symptoms. These data demonstrate that an individual's APOE genotype may influence the neuropsychiatric response to antiviral therapy with interferon alpha. Prospective studies evaluating the importance of APOE in susceptibility to interferon alpha-induced neuropsychiatric complications are needed. Moreover, pathways involving APOE should be considered in understanding the pathophysiology of interferon alpha-induced neuropsychiatric complications

    Further evidence for linkage of familial hyperaldosteronism type II at chromosome 7p22 in Italian as well as Australian and South American families

    No full text
    Background Familial hyperaldosteronism type II is a hereditary form of primary aldosteronism not attributable to the hybrid CYP11B1/CYP11B2 mutation that causes glucocorticoid remediable aldosteronism ( or familial hyperaldosteronism type I). Although genetic defect(s) underlying familial hyperaldosteronism type II have not yet been elucidated, linkage to chromosome 7p22 was previously reported in two Australian families and a South American family with familial hyperaldosteronism type II

    Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis

    No full text
    Background & Aims: There is a significant relationship between inheritance of high transforming growth factor (TGF)-beta1 and angiotensinogen-producing genotypes and the development of progressive hepatic fibrosis in patients with chronic hepatitis C. In cardiac and renal fibrosis, TGF-beta1 production may be enhanced by angiotensin II, the principal effector molecule of the renin-angiotensin system. The aim of the present study was to determine the effects of the angiotensin converting enzyme inhibitor, captopril, on the progression of hepatic fibrosis in the rat bile duct ligation model. Methods: Rats were treated with captopril (100 mg kg(-1) day(-1)) commencing 1 or 2 weeks after bile duct ligation. Animals with bile duct ligation only and sham-operated animals sewed as controls. Four weeks after bile duct ligation, indices of fibrosis were assessed. Results: Cap topril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity. Conclusions: Captopril significantly attenuates the progression of hepatic fibrosis in the vat bile duct ligation model, and its effectiveness should be studied in human chronic liver diseases associated with progressive fibrosis
    corecore