33 research outputs found

    Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AIN/GaN heterostructures

    Get PDF
    Cataloged from PDF version of article.The temperature dependent capacitance voltage (C-V) and conductance voltage (G/omega-V) characteristics of (Ni/Au)/Al(0.22)Ga(0.78)N/AlN/GaN heterostructures were investigated by considering the series resistance (R(s)) effect in the temperature range of 80-390 K. The experimental results show that the values of C and G/omega are strongly functioning of temperature and bias voltage. The values of C cross at a certain forward bias voltage point (similar to 2.8 V) and then change to negative values for each temperature, which is known as negative capacitance (NC) behavior. In order to explain the NC behavior, we drawn the C vs I and G/omega vs I plots for various temperatures at the same bias voltage. The negativity of the C decreases with increasing temperature at the forward bias voltage, and this decrement in the NC corresponds to the increment of the conductance. When the temperature was increased, the value of C decreased and the intersection point shifted towards the zero bias direction. This behavior of the C and G/omega values can be attributed to an increase in the polarization and the introduction of more carriers in the structure. R(s) values increase with increasing temperature. Such temperature dependence is in obvious disagreement with the negative temperature coefficient of R or G reported in the literature. The intersection behavior of C-V curves and the increase in R(s) with temperature can be explained by the lack of free charge carriers, especially at low temperatures. (C) 2010 Elsevier B.V. All rights reserve

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    Cataloged from PDF version of article.We investigate the structural and electrical properties of AlxIn1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1-xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1-xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. (C) 2012 Elsevier B.V. All rights reserved

    Electron transport properties in Al0.25Ga0.75N/AIN/GaN hetrostructures with different InGaN back barrier layers and GaN channel thickness grown by MOCVD

    Get PDF
    Cataloged from PDF version of article.The electron transport properties in Al0.25Ga0.75N/AlN/GaN/InxGa1-xN/GaN double heterostructures with various indium compositions and GaN channel thicknesses were investigated. Samples were grown on c-plane sapphire substrates by MOCVD and evaluated using variable temperature Hall effect measurements. In order to understand the observed transport properties, various scattering mechanisms, such as acoustic phonon, optical phonon, interface roughness, background impurity, and alloy disorder, were included in the theoretical model that was applied to the temperature-dependent mobility data. It was found that low temperature (T 160 K), optical phonon scattering is the dominant scattering mechanism for AlGaN/AlN/GaN/InGaN/GaN heterostructures. The higher mobility of the structures with InGaN back barriers was attributed to the large conduction band discontinuity obtained at the channel/buffer interface, which leads to better electron confinement. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Numerical optimization of In-mole fractions and layer thicknesses in AlxGa1-xN/AlN/GaN high electron mobility transistors with InGaN back barriers

    Get PDF
    The effects of the In-mole fraction (x) of an InxGa 1-xN back barrier layer and the thicknesses of different layers in pseudomorphic AlyGa1-yN/AlN/GaN/InxGa 1-xN/GaN heterostructures on band structures and carrier densities were investigated with the help of one-dimensional self-consistent solutions of non-linear SchrdingerPoisson equations. Strain relaxation limits were also calculated for the investigated AlyGa1-yN barrier layer and InxGa1-xN back barriers. From an experimental point of view, two different optimized structures are suggested, and the possible effects on carrier density and mobility are discussed. © 2011 Elsevier B.V. All rights reserved

    Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H-SiC

    Get PDF
    Cataloged from PDF version of article.The influence of growth pressure on the coalescence thickness and the crystal quality of GaN deposited on 4H-SiC by low pressure metalorganic vapor phase epitaxy was studied. It was shown that growth pressure has an impact on the surface roughness of epilayers and their crystal quality. GaN coalescence thicknesses were determined for the investigated growth pressures. The GaN layers were characterized by AFM and HRXRD measurements. HEMT structures were also fabricated and characterized. Among the growth pressures studied, 50, 125 and 200 mbar, 200 mbar was found to be most suitable for GaN/SiC epitaxy. (C) 2010 Elsevier B.V. All rights reserved

    Classical Yang-Baxter equation from supergravity

    Get PDF
    © 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP 3 . We promote the open-closed string map, originally formulated by Seiberg & Witten, to a solution generating prescription in generalized supergravity. The approach hinges on a knowledge of an antisymmetric bivector Θ, built from antisymmetric products of Killing vectors, which is specified by the equations of motion. In the cases we study, the equations of motion reproduce the classical Yang-Baxter equation (CYBE) and Θ is the most general r-matrix solution. Our work generalizes Yang-Baxter deformations to non-coset spaces and unlocks gravity as a means to classify r-matrix solutions to the CYBE

    Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD

    Get PDF
    We investigate the structural and electrical properties of Al xIn 1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested Al xIn 1 -xN/AlN/GaN/Al 0.04Ga 0.96N heterostructures when compared to the standard Al xIn 1 -xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al 0.04Ga 0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the Al xIn 1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible. © 2012 Elsevier B.V. All rights reserved

    Effect of growth pressure on coalescence thickness and crystal quality of GaN deposited on 4H-SiC

    Get PDF
    The influence of growth pressure on the coalescence thickness and the crystal quality of GaN deposited on 4HSiC by low pressure metalorganic vapor phase epitaxy was studied. It was shown that growth pressure has an impact on the surface roughness of epilayers and their crystal quality. GaN coalescence thicknesses were determined for the investigated growth pressures. The GaN layers were characterized by AFM and HRXRD measurements. HEMT structures were also fabricated and characterized. Among the growth pressures studied, 50, 125 and 200 mbar, 200 mbar was found to be most suitable for GaN/SiC epitaxy. © 2010 Elsevier B.V

    Improvement of breakdown characteristics in AlGaN/GaN/Al xGa 1-xN HEMT based on a grading Al xGa 1-xN buffer layer

    Get PDF
    To improve the breakdown characteristics of an AlGaN/GaN based high electron mobility transistor (HEMT) for high voltage applications, AlGaN/GaN/Al xGa 1-xN double heterostructure (DH-HEMTs) were designed and fabricated by replacing the semi-insulating GaN buffer with content graded Al xGa 1-xN (x=x 1 → x 2, x 1 > x 2), in turn linearly lowering the Al content x from x 1=90% to x 2=5% toward the front side GaN channel on a high temperature AlN buffer layer. The use of a highly resistive Al xGa 1-xN epilayer suppresses the parasitic conduction in the GaN buffer, and the band edge discontinuity limits the channel electrons spillover, thereby reducing leakage current and drain current collapse. In comparison with the conventional HEMT that use a semi-insulating GaN buffer, the fabricated DH-HEMT device with the same size presents a remarkable enhancement of the breakdown voltage. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore