210 research outputs found
A New Caspase-8 Isoform Caspase-8s Increased Sensitivity to Apoptosis in Jurkat Cells
Caspase-8 is a key initiator of death receptor-induced apoptosis. Here we report a novel short isoform of caspase-8 (caspase-8s), which encodes the first (Death Effector Domain) DED and part of the second DED, missing the C-terminal caspase domain. In vivo binding assays showed that transfected caspase-8s bound to (Fas-associated death domain protein) FADD, the adaptor protein in (death-induced signal complex) DISC. To investigate the potential effects of caspase-8s on cell apoptosis, Jurkat cells were stably transfected with caspase-8s. Overexpression of caspase-8s increased sensitivity to the apoptotic stimuli, Fas-agonistic antibody CH11. These results suggest that caspase-8s may act as a promoter of apoptosis through binding to FADD and is involved in the regulation of apoptosis. In addition, the results also indicate that the first DED was an important structure mediating combination between caspase-8 and FADD
Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering
Neural network models usually suffer from the challenge of incorporating
commonsense knowledge into the open-domain dialogue systems. In this paper, we
propose a novel knowledge-aware dialogue generation model (called TransDG),
which transfers question representation and knowledge matching abilities from
knowledge base question answering (KBQA) task to facilitate the utterance
understanding and factual knowledge selection for dialogue generation. In
addition, we propose a response guiding attention and a multi-step decoding
strategy to steer our model to focus on relevant features for response
generation. Experiments on two benchmark datasets demonstrate that our model
has robust superiority over compared methods in generating informative and
fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.Comment: Accepted by AAAI-202
Type-II Ising Pairing in Few-Layer Stanene
Spin-orbit coupling has proven indispensable in realizing topological
materials and more recently Ising pairing in two-dimensional superconductors.
This pairing mechanism relies on inversion symmetry breaking and sustains
anomalously large in-plane polarizing magnetic fields whose upper limit is
expected to diverge at low temperatures, although experimental demonstration of
this has remained elusive due to the required fields. In this work, the
recently discovered superconductor few-layer stanene, i.e. epitaxially strained
-Sn, is shown to exhibit a new type of Ising pairing between carriers
residing in bands with different orbital indices near the -point. The
bands are split as a result of spin-orbit locking without the participation of
inversion symmetry breaking. The in-plane upper critical field is strongly
enhanced at ultra-low temperature and reveals the sought for upturn
Spin-glass ground state in a triangular-lattice compound YbZnGaO
We report on comprehensive results identifying the ground state of a
triangular-lattice structured YbZnGaO to be spin glass, including no
long-range magnetic order, prominent broad excitation continua, and absence of
magnetic thermal conductivity. More crucially, from the ultralow-temperature
a.c. susceptibility measurements, we unambiguously observe frequency-dependent
peaks around 0.1 K, indicating the spin-glass ground state. We suggest this
conclusion to hold also for its sister compound YbMgGaO, which is confirmed
by the observation of spin freezing at low temperatures. We consider disorder
and frustration to be the main driving force for the spin-glass phase.Comment: Version as accepted to PR
- …