372 research outputs found

    Die Swell of Complex Polymeric Systems

    Get PDF

    Improvements to the fracture pipe network model for complex 3D discrete fracture networks

    Get PDF
    Acknowledgments Chenhui Wang thanks the financial support from China Scholarship Council (CSC) for his Ph.D. study. The authors thank the discussions of the real-world case study with Dr Yu Jing at the University of New South Wales. Open access via Wiley agreementPeer reviewedPublisher PD

    Explicit incorporation of discrete fractures into pore network models

    Get PDF
    Research Funding China Scholarship Council. Grant Number: 201708060457Peer reviewedPublisher PD

    Reconstruction-Aware Prior Distillation for Semi-supervised Point Cloud Completion

    Full text link
    Point clouds scanned by real-world sensors are always incomplete, irregular, and noisy, making the point cloud completion task become increasingly more important. Though many point cloud completion methods have been proposed, most of them require a large number of paired complete-incomplete point clouds for training, which is labor exhausted. In contrast, this paper proposes a novel Reconstruction-Aware Prior Distillation semi-supervised point cloud completion method named RaPD, which takes advantage of a two-stage training scheme to reduce the dependence on a large-scale paired dataset. In training stage 1, the so-called deep semantic prior is learned from both unpaired complete and unpaired incomplete point clouds using a reconstruction-aware pretraining process. While in training stage 2, we introduce a semi-supervised prior distillation process, where an encoder-decoder-based completion network is trained by distilling the prior into the network utilizing only a small number of paired training samples. A self-supervised completion module is further introduced, excavating the value of a large number of unpaired incomplete point clouds, leading to an increase in the network's performance. Extensive experiments on several widely used datasets demonstrate that RaPD, the first semi-supervised point cloud completion method, achieves superior performance to previous methods on both homologous and heterologous scenarios

    RGBGrasp: Image-based Object Grasping by Capturing Multiple Views during Robot Arm Movement with Neural Radiance Fields

    Full text link
    Robotic research encounters a significant hurdle when it comes to the intricate task of grasping objects that come in various shapes, materials, and textures. Unlike many prior investigations that heavily leaned on specialized point-cloud cameras or abundant RGB visual data to gather 3D insights for object-grasping missions, this paper introduces a pioneering approach called RGBGrasp. This method depends on a limited set of RGB views to perceive the 3D surroundings containing transparent and specular objects and achieve accurate grasping. Our method utilizes pre-trained depth prediction models to establish geometry constraints, enabling precise 3D structure estimation, even under limited view conditions. Finally, we integrate hash encoding and a proposal sampler strategy to significantly accelerate the 3D reconstruction process. These innovations significantly enhance the adaptability and effectiveness of our algorithm in real-world scenarios. Through comprehensive experimental validations, we demonstrate that RGBGrasp achieves remarkable success across a wide spectrum of object-grasping scenarios, establishing it as a promising solution for real-world robotic manipulation tasks. The demonstrations of our method can be found on: https://sites.google.com/view/rgbgras

    A new method for pore structure quantification and pore network extraction from SEM images

    Get PDF
    C.W. thanks China Scholarship Council’s financial support for his Ph.D. study. The authors thank Anasuria Operating Company Limited (AOC) for making available the core plug samples. We thank the two reviewers for their insight comments and constructive suggestions toward improving our manuscript. Finally, we thank John Still (University of Aberdeen Centre for Electron Microscopy, Analysis and Characterisation (ACEMAC)) for invaluable assistance in the acquisition of SEM images.Peer reviewedPostprin

    Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation From Monocular RGB Image

    Full text link
    Recently, RGBD-based category-level 6D object pose estimation has achieved promising improvement in performance, however, the requirement of depth information prohibits broader applications. In order to relieve this problem, this paper proposes a novel approach named Object Level Depth reconstruction Network (OLD-Net) taking only RGB images as input for category-level 6D object pose estimation. We propose to directly predict object-level depth from a monocular RGB image by deforming the category-level shape prior into object-level depth and the canonical NOCS representation. Two novel modules named Normalized Global Position Hints (NGPH) and Shape-aware Decoupled Depth Reconstruction (SDDR) module are introduced to learn high fidelity object-level depth and delicate shape representations. At last, the 6D object pose is solved by aligning the predicted canonical representation with the back-projected object-level depth. Extensive experiments on the challenging CAMERA25 and REAL275 datasets indicate that our model, though simple, achieves state-of-the-art performance.Comment: 19 pages, 7 figures, 4 table

    POEM: Reconstructing Hand in a Point Embedded Multi-view Stereo

    Full text link
    Enable neural networks to capture 3D geometrical-aware features is essential in multi-view based vision tasks. Previous methods usually encode the 3D information of multi-view stereo into the 2D features. In contrast, we present a novel method, named POEM, that directly operates on the 3D POints Embedded in the Multi-view stereo for reconstructing hand mesh in it. Point is a natural form of 3D information and an ideal medium for fusing features across views, as it has different projections on different views. Our method is thus in light of a simple yet effective idea, that a complex 3D hand mesh can be represented by a set of 3D points that 1) are embedded in the multi-view stereo, 2) carry features from the multi-view images, and 3) encircle the hand. To leverage the power of points, we design two operations: point-based feature fusion and cross-set point attention mechanism. Evaluation on three challenging multi-view datasets shows that POEM outperforms the state-of-the-art in hand mesh reconstruction. Code and models are available for research at https://github.com/lixiny/POEM.Comment: Accepted by CVPR 202

    Identifying Unexpected Therapeutic Targets via Chemical-Protein Interactome

    Get PDF
    Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing and mining an Alzheimer's disease (AD) drug-oriented chemical-protein interactome (CPI) using a matrix of 10 drug molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE), and highlighted several other putative targets. For example, we discovered that estrogen receptor (ER) and histone deacetylase (HDAC), which have recently been identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent the landscape of chemical-protein interactions and uncover “behind-the-scenes” aspects of the therapeutic mechanisms of existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for one-target pharmacology paradigm
    corecore