17 research outputs found
Mobilization of arachidonic acid between diacyl and ether phospholipids in rabbit alveolar macrophages
AbstractThe metabolism of 20:4 (arachidonic acid) in alkenylacyl, alkylacyl and diacyl lipid classes in choline glycerophospholipids (CGP) and ethanolamine glycerophospholipids (EGP) in rabbit alveolar macrophages was examined. [3H]20:4 was very rapidly incorporated into diacyl glycerophosphocholine (GPC). After the removal of free 20:4, the radioactivity was gradually lost from diacyl GPC. Concomitantly, the radioactivities in alkylacyl GPC and alkenylacyl glycerophosphoethanolamine (GPE) were increased, indicating that 20:4 was mobilized from diacyl GPC to alkylacyl GPC and alkenylacyl GPE. The mobilization was considered to be a 20:4-specific event. The gradual accumulation of 20:4 in ether phospholipids leads to a high abundance of 20:4 in these lipids. These results suggest metabolic relationships between 20:4 and ether phospholipids, including platelet-activating factor (PAF)
Synaptically driven endocannabinoid release requires Ca2+- assisted metabotropic glutamate receptor subtype 1 to phospholipase C β4 signaling cascade in the cerebellum
金沢大学医薬保健研究域保健学系Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G q/11-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabinoid-mediated suppression of synaptic transmission. However, precise mechanisms of endocannabinoid production initiated by physiologically relevant synaptic activity remain to be determined. To address this problem, we made whole-cell recordings from Purkinje cells (PCs) in mouse cerebellar slices and examined their excitatory synapses arising from climbing fibers (CFs) and parallel fibers (PFs). We first characterized three distinct modes to induce endocannabinoid release by analyzing CF to PC synapses. The first mode is strong activation of mGluR subtype 1 (mGluR1)-phospholipase C (PLC) β4 cascade without detectable Ca 2+ elevation. The second mode is Ca2+ elevation to a micromolar range without activation of the mGluR1-PLC/34 cascade. The third mode is the Ca2+-assisted mGluR1-PLCβ4 cascade that requires weak mGluR1 activation and Ca2+ elevation to a submicromolar range. By analyzing PF to PC synapses, we show that the third mode is essential for effective endocannabinoid release from PCs by excitatory synaptic activity. Furthermore, our biochemical analysis demonstrates that combined weak mGluR1 activation and mild depolarization in PCs effectively produces 2-arachidonoylglycerol (2-AG), a candidate of endocannabinoid, whereas either stimulus alone did not produce detectable 2-AG. Our results strongly suggest that under physiological conditions, excitatory synaptic inputs to PCs activate the Ca2+-assisted mGluR1-PLCβ4 cascade, and thereby produce 2-AG, which retrogradely modulates synaptic transmission to PCs. Copyright © 2005 Society for Neuroscience.This work was supported by Grants-in-Aid for Scientific Research and Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Sports, Culture, Science and Technology ofJapan. This work was alsosupported by theJapan Society for the Promotion of Science (JSPS) and the Toyota RIKEN Foundation. T.M. was a recipient of JSPS Research Fellowships for Young Scientists and the Research Aid of Inoue Foundation for Science. We thank S. Arai for 2-AG estimation and Drs. K. Hashimoto and T. Tabata for comments on this work
The identification of bombykol linolenate in the haemolymph of the female silkworm pupa, Bombyx mori
Human platelets respond differentially to lysophosphatidic acids having a highly unsaturated fatty acyl group and alkyl ether-linked lysophosphatidic acids.
Lysophosphatidic acid (LPA) is a physiological agonist that is produced by lysophospholipase D, phospholipase A(1) and phospholipase A(2) in the blood of animals. It exerts diverse biological actions on a broad range of animal cells. Specific receptors for this important agonist have been characterized. In this investigation, for the first time we prepared LPAs having a highly unsaturated fatty acyl group, such as the eicosapentaenoyl or docosahexaenoyl residue, and their acetylated derivatives. Human platelets aggregated more potently in response to the highly unsaturated acyl-LPAs than to LPAs with a C(18) fatty acyl group, such as an oleoyl group, while alkyl ether-linked LPAs (alkyl-LPA) had much stronger aggregating activity. Two positional isomers of LPAs with an arachidonoyl, eicosapentaenoyl or docosahexaenoyl group had equipotent aggregatory activity as well as the positional isomers of their acetylated analogues, indicating that putative LPA receptors could not distinguish the difference between the positional isomers. We found that platelet preparations from two individuals showed no aggregatory response to alkyl-LPAs, although they contained mRNAs for known LPA receptors in the following order of expression level: endothelial differentiation gene (Edg)-4>Edg-7>Edg-2. We also obtained evidence that 2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid (ONO-RS-082), a phospholipase A(2) inhibitor, potentiated alkyl-LPA-induced platelet aggregation, but inhibited highly unsaturated acyl-LPA-induced platelet aggregation. These results indicated that human platelets express acyl-LPA-selective and alkyl-LPA-selective receptors on their plasma membrane