3,161 research outputs found

    Regulation of human PAX6 expression by miR-7

    Get PDF
    The paired box gene 6 (PAX6) is a powerful mediator of eye and brain organogenesis whose spatiotemporal expression is exquisitely controlled by multiple mechanisms, including post-transcriptional regulation by microRNAs (miRNAs). In the present study, we use bioinformatic predictions to identify three candidate microRNA-7 (miR-7) target sites in the human PAX6 3′ untranslated region (3′-UTR) and demonstrate that two of them are functionally active in a human cell line. Furthermore, transient transfection of cells with synthetic miR-7 inhibits PAX6 protein expression but does not alter levels of PAX6 mRNA, suggesting that miR-7 induces translational repression of PAX6. Finally, a comparison of PAX6 3′-UTRs across species reveals that one of the functional miR-7 target sites is conserved, whereas the second functional target site is found only in primates. Thus, the interaction between PAX6 and miR-7 appears to be highly conserved; however, the precise number of sites through which this interaction occurs may have expanded throughout evolution

    Chemical Doppelgangers in GALAH DR3: the Distinguishing Power of Neutron-Capture Elements Among Milky Way Disk Stars

    Full text link
    The observed chemical diversity of Milky Way stars places important constraints on Galactic chemical evolution and the mixing processes that operate within the interstellar medium. Recent works have found that the chemical diversity of disk stars is low. For example, the APOGEE "chemical doppelganger rate," or the rate at which random pairs of field stars appear as chemically similar as stars born together, is high, and the chemical distributions of APOGEE stars in some Galactic populations are well-described by two-dimensional models. However, limited attention has been paid to the heavy elements (Z > 30) in this context. In this work, we probe the potential for neutron-capture elements to enhance the chemical diversity of stars by determining their effect on the chemical doppelganger rate. We measure the doppelganger rate in GALAH DR3, with abundances rederived using The Cannon, and find that considering the neutron-capture elements decreases the doppelganger rate from 2.2% to 0.4%, nearly a factor of 6, for stars with -0.1 < [Fe/H] < 0.1. While chemical similarity correlates with similarity in age and dynamics, including neutron-capture elements does not appear to select stars that are more similar in these characteristics. Our results highlight that the neutron-capture elements contain information that is distinct from that of the lighter elements and thus add at least one dimension to Milky Way abundance space. This work illustrates the importance of considering the neutron-capture elements when chemically characterizing stars and motivates ongoing work to improve their atomic data and measurements in spectroscopic surveys.Comment: 23 pages, 16 figures, 1 table. Submitted to AAS Journals, comments welcome. Associated catalog of high precision, Cannon-rederived abundances for GALAH giants to be made publicly available upon acceptance and available now upon request. See Walsen et al. 2023 for a complementary, high precision, Cannon-rederived abundance catalog for GALAH solar twin

    Feminism, Abortion and Disability: irreconcilable differences?

    Get PDF
    There has been considerable discussion of the political allegiance between the feminist and disability movements, but the question of abortion remains a thorny one. Disability rights advocates have been keen to demonstrate that it is possible to believe in a woman's right to sovereignty over the body and, yet, be opposed to the selective abortion of an impaired foetus – describing the latter as a form of 'weak' eugenics. The aim of this paper is to show that whilst there may be some points of agreement between the feminist and disability movements on the question of abortion, there exist fundamental and irreconcilable differences

    Effects of fasting on serial measurements of hyperpolarized [1-(13) C]pyruvate metabolism in tumors.

    Get PDF
    Imaging of the metabolism of hyperpolarized [1-(13) C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of (13) C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non-fasted animals. The fasted state showed lower intra-individual variability, although the [1-(13) C]lactate/[1-(13) C]pyruvate signal ratio was significantly greater in fasted than in non-fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of (13) C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.Cancer Research UK (Grant ID: 17242)This is the final version of the article. It first appeared from Wiley via https://doi.org/10.1002/nbm.356

    Comparing the interobserver reproducibility of different regions of interest on multi-parametric renal magnetic resonance imaging in healthy volunteers, patients with heart failure and renal transplant recipients

    Get PDF
    Objective: To assess interobserver reproducibility of different regions of interest (ROIs) on multi-parametric renal MRI using commercially available software. Materials and methods: Healthy volunteers (HV), patients with heart failure (HF) and renal transplant recipients (Tx) were recruited. Localiser scans, T1 mapping and pseudo-continuous arterial spin labelling (pCASL) were performed. HV and Tx also underwent diffusion-weighted imaging to allow calculation of apparent diffusion coefficient (ADC). For T1, pCASL and ADC, ROIs were drawn for whole kidney (WK), cortex (Cx), user-defined representative cortex (rep-Cx) and medulla. Intraclass correlation coefficient (ICC) and coefficient of variation (CoV) were assessed. Results: Forty participants were included (10 HV, 10 HF and 20 Tx). The ICC for renal volume was 0.97 and CoV 6.5%. For T1 and ADC, WK, Cx, and rep-Cx were highly reproducible with ICC ≥ 0.76 and CoV &lt; 5%. However, cortical pCASL results were more variable (ICC &gt; 0.86, but CoV up to 14.2%). While reproducible, WK values were derived from a wide spread of data (ROI standard deviation 17% to 55% of the mean value for ADC and pCASL, respectively). Renal volume differed between groups (p &lt; 0.001), while mean cortical T1 values were greater in Tx compared to HV (p = 0.009) and HF (p = 0.02). Medullary T1 values were also higher in Tx than HV (p = 0.03), while medullary pCASL values were significantly lower in Tx compared to HV and HF (p = 0.03 for both). Discussion: Kidney volume calculated by manually contouring a localiser scan was highly reproducible between observers and detected significant differences across patient groups. For T1, pCASL and ADC, Cx and rep-Cx ROIs are generally reproducible with advantages over WK values

    Global avian influenza surveillance in wild birds: A strategy to capture viral diversity

    Get PDF
    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing. (Résumé d'auteur

    Radiation effects on satellites during extreme space weather events

    Get PDF
    High‐energy trapped electrons in the Van Allen belts pose a threat to the survivability of orbiting spacecraft. Two key radiation effects are total ionising dose (TID) and displacement damage dose (DDD) in components and materials, both of which cause cumulative and largely irreversible damage. During an extreme space weather event, trapped electron fluxes in the Van Allen belts can increase by several orders of magnitude in intensity, leading to an enhanced risk of satellite failure. We use extreme environments generated by modelling and statistical analyses to estimate the consequences for satellites in terms of the radiation effects described above. A worst‐case event could lead to significant losses in power generating capability ‐ up to almost 8% ‐ and cause up to four years’ worth of ionising dose degradation, leading to component damage and a life‐shortening effect on satellites. The consequences of such losses are hugely significant given our increasing reliance on satellites for a vast array of services, including communication, navigation, defence and critical infrastructure
    corecore