977 research outputs found

    Ghostbusters in f(R)f(R) supergravity

    Full text link
    f(R)f(R) supergravity is known to contain a ghost mode associated with higher-derivative terms if it contains RnR^n with nn greater than two.We remove the ghost in f(R)f(R) supergravity by introducing auxiliary gauge field to absorb the ghost. We dub this method as the ghostbuster mechanism~\cite{Fujimori:2016udq}. We show that the mechanism removes the ghost supermultiplet but also terms including RnR^n with n3n\geq3, after integrating out auxiliary degrees of freedom. For pure supergravity case, there appears an instability in the resultant scalar potential. We then show that the instability of the scalar potential can be cured by introducing matter couplings in such a way that the system has a stable potential.Comment: 24 pages, v2: comments, references, new section added, version published in JHE

    Switching magnetic vortex core by a single nanosecond current pulse

    Full text link
    In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a single nanosecond current pulse can switch the core polarity. This method also provides the precise control of the core direction, which constitutes fundamental technology for realizing a vortex core memory.Comment: 13 pages, 4 figure

    Three-Dimensional Simulations of Standing Accretion Shock Instability in Core-Collapse Supernovae

    Full text link
    We have studied non-axisymmetric standing accretion shock instability, or SASI, by 3D hydrodynamical simulations. This is an extention of our previous study on axisymmetric SASI. We have prepared a spherically symmetric and steady accretion flow through a standing shock wave onto a proto-neutron star, taking into account a realistic equation of state and neutrino heating and cooling. This unperturbed model is supposed to represent approximately the typical post-bounce phase of core-collapse supernovae. We then have added a small perturbation (~1%) to the radial velocity and computed the ensuing evolutions. Not only axisymmetric but non-axisymmetric perturbations have been also imposed. We have applied mode analysis to the non-spherical deformation of the shock surface, using the spherical harmonics. We have found that (1) the growth rates of SASI are degenerate with respect to the azimuthal index m of the spherical harmonics Y_l^m, just as expected for a spherically symmetric background, (2) nonlinear mode couplings produce only m=0 modes for the axisymmetric perturbations, whereas m=!0 modes are also generated in the non-axisymmetric cases according to the selection rule for the quadratic couplings, (3) the nonlinear saturation level of each mode is lower in general for 3D than for 2D because a larger number of modes are contributing to turbulence in 3D, (4) low l modes are dominant in the nonlinear phase, (5) the equi-partition is nearly established among different m modes in the nonlinear phase, (6) the spectra with respect to l obey power laws with a slope slightly steeper for 3D, and (7) although these features are common to the models with and without a shock revival at the end of simulation, the dominance of low l modes is more remarkable in the models with a shock revival.Comment: 37 pages, 16 figures, and 1 table, submitted to Ap
    corecore