33 research outputs found

    Mechanisms, molecular and sero-epidemiology of antimicrobial resistance in bacterial respiratory pathogens isolated from Japanese children

    Get PDF
    Abstract Background The clinical management of community-acquired respiratory tract infections (RTIs) is complicated by the increasing worldwide prevalence of antibacterial resistance, in particular, β-lactam and macrolide resistance, among the most common causative bacterial pathogens. This study aimed to determine the mechanisms and molecular- and sero-epidemiology of antibacterial resistance among the key paediatric respiratory pathogens in Japan. Methods Isolates were collected at 18 centres in Japan during 2002 and 2003 from children with RTIs as part of the PROTEKT surveillance programme. A proportion of Haemophilus influenzae isolates was subjected to sequencing analysis of the ftsI gene; phylogenetic relatedness was assessed using multilocus sequence typing. Streptococcus pneumoniae isolates were screened for macrolide-resistance genotype by polymerase chain reaction and serotyped using the capsular swelling method. Susceptibility of isolates to selected antibacterials was performed using CLSI methodology. Results and Discussion Of the 557 H. influenzae isolates collected, 30 (5.4%) were β-lactamase-positive [BL+], 115 (20.6%) were BL-nonproducing ampicillin-resistant (BLNAR; MIC ≥ 4 mg/L) and 79 (14.2%) were BL-nonproducing ampicillin-intermediate (BLNAI; MIC 2 mg/L). Dabernat Group III penicillin binding protein 3 (PBP3) amino acid substitutions in the ftsI gene were closely correlated with BLNAR status but phylogenetic analysis indicated marked clonal diversity. PBP mutations were also found among BL+ and BL-nonproducing ampicillin-sensitive isolates. Of the antibacterials tested, azithromycin and telithromycin were the most active against H. influenzae (100% and 99.3% susceptibility, respectively). A large proportion (75.2%) of the 468 S. pneumoniae isolates exhibited macrolide resistance (erythromycin MIC ≥ 1 mg/L); erm(B) was the most common macrolide resistance genotype (58.8%), followed by mef(A) (37.2%). The most common pneumococcal serotypes were 6B (19.7%), 19F (13.7%), 23F (13.5%) and 6A (12.8%). Telithromycin and amoxicillin-clavulanate were the most active antibacterials against S. pneumoniae (99.8% and 99.6% susceptibility, respectively). Conclusion Approximately one-third of H. influenzae isolates from paediatric patients in Japan are BLNAI/BLNAR, mainly as a result of clonally diverse PBP3 mutations. Together with the continued high prevalence of pneumococcal macrolide resistance, these results may have implications for the clinical management of paediatric RTIs in Japan.</p

    Low level ß-lactamase production in methicillin-resistant staphylococcus aureus strains with ß-lactam antibiotics-induced vancomycin resistance

    Get PDF
    BACKGROUND: A class of methicillin-resistant Staphylococcus aureus (MRSA) shows resistance to vancomycin only in the presence of ß-lactam antibiotics (BIVR). This type of vancomycin resistance is mainly attributable to the rapid depletion of free vancomycin in the presence of ß-lactam antibiotics. This means that ß-lactam antibiotics remain active or intact in BIVR culture, although most MRSA cells are assumed to produce ß-lactamase. We hypothesised that the BIVR cells either did not harbour the ß-lactamase gene, blaZ, or the gene was quiescent. We tested this hypothesis by determining ß-lactamase activity and conducting PCR amplification of blaZ. RESULTS: Five randomly selected laboratory stock BIVR strains showed an undetectable level of ß-lactamase activity and were blaZ-negative. Five non-BIVR stock strains showed an average ß-lactamase activity of 2.59 ± 0.35 U. To test freshly isolated MRSA, 353 clinical isolates were collected from 11 regionally distant hospitals. Among 25 BIVR strains, only 16% and 8% were blaZ positive and ß-lactamase-positive, respectively. In contrast, 95% and 61% of 328 non-BIVR strains had the blaZ gene and produced active ß-lactamase, respectively. To know the mechanism of low ß-lactamase activity in the BIVR cells, they were transformed with the plasmid carrying the blaZ gene. The transformants still showed a low level of ß-lactamase activity that was several orders of magnitude lower than that of blaZ-positive non-BIVR cells. Presence of the ß-lactamase gene in the transformants was tested by PCR amplification of blaZ using 11 pairs of primers covering the entire blaZ sequence. Yield of the PCR products was consistently low compared with that using blaZ-positive non-BIVR cells. Nucleotide sequencing of blaZ in one of the BIVR transformants revealed 10 amino acid substitutions. Thus, it is likely that the ß-lactamase gene was modified in the BIVR cells to downregulate active ß-lactamase production. CONCLUSIONS: We concluded that BIVR cells gain vancomycin resistance by the elimination or inactivation of ß-lactamase production, thereby preserving ß-lactam antibiotics in milieu, stimulating peptidoglycan metabolism, and depleting free vancomycin to a level below the minimum inhibitory concentration of vancomycin

    Nationwide surveillance of bacterial respiratory pathogens conducted by the surveillance committee of Japanese Society of Chemotherapy, the Japanese Association for Infectious Diseases, and the Japanese Society for Clinical Microbiology in 2010: General view of the pathogens\u27 antibacterial susceptibility

    Get PDF
    The nationwide surveillance on antimicrobial susceptibility of bacterial respiratory pathogens from patients in Japan, was conducted by Japanese Society of Chemotherapy, Japanese Association for Infectious Diseases and Japanese Society for Clinical Microbiology in 2010.The isolates were collected from clinical specimens obtained from well-diagnosed adult patients with respiratory tract infections during the period from January and April 2010 by three societies. Antimicrobial susceptibility testing was conducted at the central reference laboratory according to the method recommended by Clinical and Laboratory Standard Institutes using maximum 45 antibacterial agents.Susceptibility testing was evaluable with 954 strains (206 Staphylococcus aureus, 189 Streptococcus pneumoniae, 4 Streptococcus pyogenes, 182 Haemophilus influenzae, 74 Moraxella catarrhalis, 139 Klebsiella pneumoniae and 160 Pseudomonas aeruginosa). Ratio of methicillin-resistant S.aureus was as high as 50.5%, and those of penicillin-intermediate and -resistant S.pneumoniae were 1.1% and 0.0%, respectively. Among H.influenzae, 17.6% of them were found to be β-lactamase-non-producing ampicillin (ABPC)-intermediately resistant, 33.5% to be β-lactamase-non-producing ABPC-resistant and 11.0% to be β-lactamase-producing ABPC-resistant strains. Extended spectrum β-lactamase-producing K.pneumoniae and multi-drug resistant P.aeruginosa with metallo β-lactamase were 2.9% and 0.6%, respectively.Continuous national surveillance of antimicrobial susceptibility of respiratory pathogens is crucial in order to monitor changing patterns of susceptibility and to be able to update treatment recommendations on a regular basis

    Definite Infective Endocarditis: Clinical and Microbiological Features of 155 Episodes in One Japanese University Hospital

    No full text
    To evaluate the epidemiology, clinical features, and microbiological features (including antibiotic susceptibility) of infective endocarditis (IE) at Kitasato University Hospital, Japan. Methods: We retrospectively analyzed 153 patients (155 episodes) with definite IE according to the Duke criteria, who presented over a 17-year period. The minimum inhibitory concentrations of antibiotics for cultured causative microorganisms were also examined. Results: Viridans group streptococci were the most common pathogens (36.8%, 57 episodes), followed by Staphylococcus aureus [21.3%, 33 episodes, including 10 episodes due to methicillin-resistant S. aureus (MRSA)]. Thirty-nine of the 40 strains of viridans streptococci were fully susceptible to penicillin. Comparison of IE due to methicillin-sensitive S. aureus (MSSA) and MRSA showed that the latter had a higher mortality rate (34.8%, 8/23 vs. 70.0%, 7/10). Compared with MSSA, IE caused by MRSA was significantly more likely to be related to nosocomial infection (10/10, p < 0.001), hemodialysis (4/10, 40.0%, p = 0.005), and surgery or intravascular catheter insertion (8/10, 80.0%, p = 0.007). There was a significantly higher mortality rate in non-operated (15/43, 34.9%) than in operated (2/21, 9.5%) (p < 0.001) elderly patients. In 92/155 episodes (59.4%), antibiotics were given before blood cultures were obtained. Culture-negative IE occurred in 20.7% (19/92) of patients on antibiotics versus 6.3% (4/63) of those not on antibiotics (p = 0.02). Of 155 episodes of IE, 34 (21.9%) were fatal and staphylococcal had significantly higher mortality than streptococcal IE [(19/40, 47.5%) vs. (7/72, 9.7%); p < 0.001]. Conclusion: The most frequently isolated pathogens were viridans group streptococci, which differed from other recent studies. In the present study, no penicillin-resistant strains were detected and there was a higher mortality rate for IE caused by MRSA than MSSA. IE should be considered in MRSA patients with the following risk factors: nosocomial infection, hemodialysis, and surgery or intravascular catheter insertion

    In Vitro Activity of Tebipenem, a New Oral Carbapenem Antibiotic, against Penicillin-Nonsusceptible Streptococcus pneumoniae

    No full text
    The in vitro activity of tebipenem (TBM), a new oral carbapenem antibiotic, against Streptococcus pneumoniae clinical isolates (n = 202) was compared with those of 15 reference agents. The isolates were classified into five genotypic classes after PCR identification of abnormal pbp1a, pbp2x, and pbp2b genes: (i) penicillin-susceptible S. pneumoniae (PSSP) isolates with no abnormal pbp genes (n = 34; 16.8%), (ii) genotypic penicillin-intermediate S. pneumoniae (gPISP) isolates with only an abnormal pbp2x gene [gPISP (2x)] (n = 48; 23.8%), (iii) gPISP isolates with abnormal pbp1a and pbp2x genes (n = 32; 15.8%), (iv) gPISP isolates with abnormal pbp2x and pbp2b genes (n = 16; 7.9%), and (v) genotypic penicillin-resistant S. pneumoniae (gPRSP) isolates with three abnormal pbp genes (n = 72; 35.6%). The majority of the strains tested had mefA (n = 59; 29.2%) or ermB (n = 91; 45%) gene-mediating macrolide resistance. For these isolates the MIC at which 90% of isolates are inhibited was significantly lower for TBM than for the reference oral antibiotics, as follows: 0.002 μg/ml for PSSP, 0.004 μg/ml for gPISP (2x), 0.016 μg/ml for gPISP (isolates with abnormal pbp1a and pbp2x genes and isolates with abnormal pbp2x and pbp2b genes), and 0.063 μg/ml for gPRSP. In addition, TBM showed excellent bactericidal activity against gPRSP isolates, which exhibited a 3-log(10) decrease within 2 h when they were incubated with a concentration greater than or equal to the MIC. Inhibition of cell wall synthesis toward the long axis and subsequent cell lysis were observed by scanning electron microscopy after a short-term exposure to TBM, unlike the effects seen with cephalosporins. These data suggest that TBM has potent activity against multidrug-resistant S. pneumoniae, the causative pathogen of community-acquired respiratory tract infections
    corecore