46 research outputs found
Effects of Rotation on Standing Accretion Shock Instability in Nonlinear Phase for Core-Collapse Supernovae
We studied the effects of rotation on standing accretion shock instability
(SASI) by performing three-dimensional hydrodynamics simulations. Taking into
account a realistic equation of state and neutrino heating/cooling, we prepared
a spherically symmmetric and steady accretion flow through a standing shock
wave onto a proto-neutron star (PNS). When the SASI entered the nonlinear
phase, we imposed uniform rotation on the flow advecting from the outer
boundary of the iron core, whose specific angular momentum was assumed to agree
with recent stellar evolution models. Using spherical harmonics in space and
Fourier decompositions in time, we performed mode analysis of the nonspherical
deformed shock wave to observe rotational effects on the SASI in the nonlinear
phase. We found that rotation imposed on the axisymmetric SASI did not make any
spiral modes and hardly affected sloshing modes, except for steady l=2, m=0
modes. In contrast, rotation imposed on the non-axisymmetric flow increased the
amplitude of spiral modes so that some spiral flows accreting on the PNS were
more clearly formed inside the shock wave than without rotation. The amplitudes
of spiral modes increased significantly with rotation in the progressive
direction.Comment: 27 pages, 11 figures, Submitted to Ap
Silencing dentate newborn neurons alters excitatory/inhibitory balance and impairs behavioral inhibition and flexibility
Adult neurogenesis confers the hippocampus with unparalleled neural plasticity, essential for intricate cognitive functions. The specific influence of sparse newborn neurons (NBNs) in modulating neural activities and subsequently steering behavior, however, remains obscure. Using an engineered NBN–tetanus toxin mouse model (NBN- TeTX), we noninvasively silenced NBNs, elucidating their crucial role in impulse inhibition and cognitive flexibility as evidenced through Morris water maze reversal learning and Go/Nogo task in operant learning. Taskbased functional MRI (tb- fMRI) paired with operant learning revealed dorsal hippocampal hyperactivation during the Nogo task in male NBN- TeTX mice, suggesting that hippocampal hyperexcitability might underlie the observed behavioral deficits. Additionally, resting- state fMRI (rs- fMRI) exhibited enhanced functional connectivity between the dorsal and ventral dentate gyrus following NBN silencing. Further investigations into the activities of PV+ interneurons and mossy cells highlighted the indispensability of NBNs in maintaining the hippocampal excitation/inhibition balance. Our findings emphasize that the neural plasticity driven by NBNs extensively modulates the hippocampus, sculpting inhibitory control and cognitive flexibility.journal articl
Default mode network in young male adults with autism spectrum disorder: Relationship with autism spectrum traits
Background: Autism spectrum traits are postulated to lie on a continuum that extends between individuals with autism and individuals with typical development (TD). Social cognition properties that are deeply associated with autism spectrum traits have been linked to functional connectivity between regions within the brain\u27s default mode network (DMN). Previous studies have shown that the resting-state functional connectivities (rs-FCs) of DMN are low and show negative correlation with the level of autism spectrum traits in individuals with autism spectrum disorder (ASD). However, it is unclear whether individual differences of autism spectrum traits are associated with the strength of rs-FCs of DMN in participants including the general population. Methods. Using the seed-based approach, we investigated the rs-FCs of DMN, particularly including the following two core regions of DMN: the anterior medial prefrontal cortex (aMPFC) and posterior cingulate cortex (PCC) in 19 young male adults with high-functioning ASD (mean age = 25.3 ± 6.9 years; autism-spectrum quotient (AQ) = 33.4 ± 4.2; full scale IQ (F-IQ) = 109.7 ± 12.4) compared with 21 age- and IQ-matched young male adults from the TD group (mean age = 24.8 ± 4.3 years; AQ = 18.6 ± 5.7; F-IQ = 109.5 ± 8.7). We also analyzed the correlation between the strength of rs-FCs and autism spectrum traits measured using AQ score. Results: The strengths of rs-FCs from core regions of DMN were significantly lower in ASD participants than TD participants. Under multiple regression analysis, the strengths of rs-FCs in brain areas from aMPFC seed showed negative correlation with AQ scores in ASD participants and TD participants. Conclusions: Our findings suggest that the strength of rs-FCs in DMN is associated with autism spectrum traits in the TD population as well as patients with ASD, supporting the continuum view. The rs-FCs of DMN may be useful biomarkers for the objective identification of autism spectrum traits, regardless of ASD diagnosis. © 2014 Jung et al.; licensee BioMed Central Ltd
Effect of Peripheral 5-HT on Glucose and Lipid Metabolism in Wether Sheep
In mice, peripheral 5-HT induces an increase in the plasma concentrations of glucose, insulin and bile acids, and a decrease in plasma triglyceride, NEFA and cholesterol concentrations. However, given the unique characteristics of the metabolism of ruminants relative to monogastric animals, the physiological role of peripheral 5-HT on glucose and lipid metabolism in sheep remains to be established. Therefore, in this study, we investigated the effect of 5-HT on the circulating concentrations of metabolites and insulin using five 5-HT receptor (5HTR) antagonists in sheep. After fasting for 24 h, sheep were intravenously injected with 5-HT, following which-, plasma glucose, insulin, triglyceride and NEFA concentrations were significantly elevated. In contrast, 5-HT did not affect the plasma cholesterol concentration, and it induced a decrease in bile acid concentrations. Increases in plasma glucose and insulin concentrations induced by 5-HT were attenuated by pre-treatment with Methysergide, a 5HTR 1, 2 and 7 antagonist. Additionally, decreased plasma bile acid concentrations induced by 5-HT were blocked by pre-treatment with Ketanserin, a 5HTR 2A antagonist. However, none of the 5HTR antagonists inhibited the increase in plasma triglyceride and NEFA levels induced by 5-HT. On the other hand, mRNA expressions of 5HTR1D and 1E were observed in the liver, pancreas and skeletal muscle. These results suggest that there are a number of differences in the physiological functions of peripheral 5-HT with respect to lipid metabolism between mice and sheep, though its effect on glucose metabolism appears to be similar between these species
