27 research outputs found

    Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition.

    Get PDF
    Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors

    Spatiotemporal analysis of microRNA-8 reveals important role in mosquito reproductive processes: DOI: 10.14800/rd.815

    No full text
    Female mosquitoes require a blood meal for reproduction, providing the underlying mechanism for the spread of many devastating vector-borne diseases in humans. Understanding the mechanisms that govern the major functions linked to the female mosquito's ability to utilize blood and develop eggs is of paramount importance. Reports have indicated that microRNAs (miRNAs) are differentially expressed in various tissues of the female mosquito upon the uptake of a blood meal. In our previous research, we have reported the importance of miRNAs in regulating mosquito blood digestion through the characterization of the conserved miRNA, miR-275, and the mosquito specific miRNA, miR-1174. Our most recent work has shown that the conserved miRNA, miR-8, targets the Wingless signaling pathway to regulate secretion of yolk protein precursors by the female mosquito fat body and accumulation into the developing ovaries. Here, we summarize the role of miRNAs in the female mosquito, particularly miR-8. We also discuss the recent advances in mosquito biology and how these genetic tools can enhance our understanding of miRNA function

    Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase to control key functions in the gut

    No full text
    Lineage-specific microRNAs (miRNAs) may contribute to functions specific to hematophagous mosquitoes and, as such, have potential for contributing to the development of future mosquito control approaches. Here we report that the mosquito- and gut-specific miRNA, miR-1174, is required for proper sugar absorption, fluid excretion, blood intake, and, consequently, egg maturation and survival in female mosquitoes. miR-1174 is highly expressed and localized in the posterior midgut, the blood-digesting portion of the mosquito alimentary canal. Depletion of miR-1174 results in severe defects in sugar absorption and blood intake. We identified serine hydroxymethyltransferase (SHMT) is a direct miR-1174 target. The adverse phenotypes caused by miR-1174 silencing were rescued by SHMT RNA interference. Our results suggest that miR-1174 is essential for fine-tuning the SHMT transcript to levels necessary for normal mosquito gut functions

    Mosquito-specific microRNA-1174 targets serine hydroxymethyltransferase

    No full text

    MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes

    No full text
    Female mosquitoes require a blood meal for reproduction, and this blood meal provides the underlying mechanism for the spread of many important vector-borne diseases in humans. A deeper understanding of the molecular mechanisms linked to mosquito blood meal processes and reproductive events is of particular importance for devising innovative vector control strategies. We found that the conserved microRNA miR-8 is an essential regulator of mosquito reproductive events. Two strategies to inhibit miR-8 function in vivo were used for functional characterization: systemic antagomir depletion and spatiotemporal inhibition using the miRNA sponge transgenic method in combination with the yeast transcriptional activator gal4 protein/upstream activating sequence system. Depletion of miR-8 in the female mosquito results in defects related to egg development and deposition. We used a multialgorithm approach for miRNA target prediction in mosquito 3' UTRs and experimentally verified secreted wingless-interacting molecule (swim) as an authentic target of miR-8. Our findings demonstrate that miR-8 controls the activity of the long-range Wingless (Wg) signaling by regulating Swim expression in the female fat body. We discovered that the miR-8/Wg axis is critical for the proper secretion of lipophorin and vitellogenin by the fat body and subsequent accumulation of these yolk protein precursors by developing oocytes

    MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes

    No full text
    Female mosquitoes require a blood meal for reproduction, and this blood meal provides the underlying mechanism for the spread of many important vector-borne diseases in humans. A deeper understanding of the molecular mechanisms linked to mosquito blood meal processes and reproductive events is of particular importance for devising innovative vector control strategies. We found that the conserved microRNA miR-8 is an essential regulator of mosquito reproductive events. Two strategies to inhibit miR-8 function in vivo were used for functional characterization: systemic antagomir depletion and spatiotemporal inhibition using the miRNA sponge transgenic method in combination with the yeast transcriptional activator gal4 protein/upstream activating sequence system. Depletion of miR-8 in the female mosquito results in defects related to egg development and deposition. We used a multialgorithm approach for miRNA target prediction in mosquito 3′ UTRs and experimentally verified secreted wingless-interacting molecule (swim) as an authentic target of miR-8. Our findings demonstrate that miR-8 controls the activity of the long-range Wingless (Wg) signaling by regulating Swim expression in the female fat body. We discovered that the miR-8/Wg axis is critical for the proper secretion of lipophorin and vitellogenin by the fat body and subsequent accumulation of these yolk protein precursors by developing oocytes
    corecore