6,828 research outputs found

    Effects of CSF hormones and ionic composition on salt/water metabolism

    Get PDF
    This collaborative agreement between Drs. Severs and Keil began in 1981, arising from a continuing interest in the issue of what, exactly, are the consequences of headward fluid shifts during manned spaceflight. Such shifts were recognized early by both U.S. and Soviet Scientists because of signs and symptoms referable to the head. Some of these include disturbed vision, puffiness in the face and periorbital areas, headache, vestibular dysfunction and distended jugular veins. We posited that the fluid shift had an immediate effect on the brain, and a long-term action requiring a neural interpretation of the flight environment. This would re-adjust both efferent neural as well as hormonal mechanisms to sustain cardiovascular and fluid/electrolyte balance consonent with survival in microgravity. Work along these lines is summarized

    Role of isospin physics in supernova matter and neutron stars

    Full text link
    We investigate the liquid-gas phase transition of hot protoneutron stars shortly after their birth following supernova explosion and the composition and structure of hyperon-rich (proto)neutron stars within a relativistic mean-field model where the nuclear symmetry energy has been constrained from the measured neutron skin thickness of finite nuclei. Light clusters are abundantly formed with increasing temperature well inside the neutrino-sphere for an uniform supernova matter. Liquid-gas phase transition is found to suppress the cluster yield within the coexistence phase as well as decrease considerably the neutron-proton asymmetry over a wide density range. We find symmetry energy has a modest effect on the boundaries and the critical temperature for the liquid-gas phase transition, and the composition depends more sensitively on the number of trapped neutrinos and temperature of the protoneutron star. The influence of hyperons in the dense interior of stars makes the overall equation of state soft. However, neutrino trapping distinctly delays the appearance of hyperons due to abundance of electrons. We also find that a softer symmetry energy further makes the onset of hyperon less favorable. The resulting structures of the (proto)neutron stars with hyperons and with liquid-gas phase transition are discussed.Comment: 11 pages, 7 figures, RevTe

    Computing and counting longest paths on circular-arc graphs in polynomial time.

    Get PDF
    The longest path problem asks for a path with the largest number of vertices in a given graph. The first polynomial time algorithm (with running time O(n4)) has been recently developed for interval graphs. Even though interval and circular-arc graphs look superficially similar, they differ substantially, as circular-arc graphs are not perfect. In this paper, we prove that for every path P of a circular-arc graph G, we can appropriately “cut” the circle, such that the obtained (not induced) interval subgraph G′ of G admits a path P′ on the same vertices as P. This non-trivial result is of independent interest, as it suggests a generic reduction of a number of path problems on circular-arc graphs to the case of interval graphs with a multiplicative linear time overhead of O(n). As an application of this reduction, we present the first polynomial algorithm for the longest path problem on circular-arc graphs, which turns out to have the same running time O(n4) with the one on interval graphs, as we manage to get rid of the linear overhead of the reduction. This algorithm computes in the same time an n-approximation of the number of different vertex sets that provide a longest path; in the case where G is an interval graph, we compute the exact number. Moreover, our algorithm can be directly extended with the same running time to the case where every vertex has an arbitrary positive weight

    Local and global stereopsis in the horse.

    Get PDF
    Although horses have laterally-placed eyes, there is substantial binocular overlap, allowing for the possibility that these animals have stereopsis. In the first experiment of the present study we measured local stereopsis by obtaining monocular and binocular depth thresholds for renal depth stimuli. On all measures, the horses\u27 binocular performance was superior to their monocular. When depth thresholds were obtained, binocular thresholds were several times superior to those obtained monocularly, suggesting that the animals could use stereoscopic information when it was available. The binocular thresholds averaged about 15 min arc. In the second experiment we obtained evidence for the presence of global stereopsis by testing the animals\u27 ability to discriminate between random-dot stereograms with and without consistent disparity information. When presented with such stimuli they showed a strong preference for the cyclopean equivalent of the positive stimulus with the real depth. These results provide the first behavioral demonstration of a full range of stereoscopic skills in a lateral-eyed mammal

    Evidence for an active-center cysteine in the SH-proteinase α-clostripain through use of N-tosyl-L-lysine chloromethyl ketone

    Get PDF
    AbstractThe rapid reaction of α-clostripain with tosyl-L-lysine chloromethyl ketone results in a complete loss of activity and in the disappearance of one titratable SH group whereas the number of histidine residues is not affected. Tosyl-L-phenylalanine chloromethyl ketone and phenylmethylsulfonyl fluoride have no effect on the catalytic activity. From the molar ratio and under the assumption of 1:1 molar interaction, the fully active enzyme has a specific activity of 650–700 unitsmg [twice the value proposed by Porter et al. (J. Biol. Chem. 246 (1971) 7675-7682)]. Partial oxidation makes it experimentally impossible to attain this maximal value

    Meteoritic rutile

    Get PDF
    Presence of titanium oxide in rutile of various meteorite

    Deconfinement transition in protoneutron stars: analysis within the Nambu-Jona-Lasinio model

    Full text link
    We study the effect of color superconductivity and neutrino trapping on the deconfinement transition of hadronic matter into quark matter in a protoneutron star. To describe the strongly interacting matter a two-phase picture is adopted. For the hadronic phase we use different parameterizations of a non-linear Walecka model which includes the whole baryon octet. For the quark matter phase we use an SU(3)fSU(3)_f Nambu-Jona-Lasinio effective model which includes color superconductivity. We impose color and flavor conservation during the transition in such a way that just deconfined quark matter is transitorily out of equilibrium with respect to weak interactions. We find that deconfinement is more difficult for small neutrino content and it is easier for lower temperatures although these effects are not too large. In addition they will tend to cancel each other as the protoneutron star cools and deleptonizes, resulting a transition density that is roughly constant along the evolution of the protoneutron star. According to these results the deconfinement transition is favored after substantial cooling and contraction of the protoneutron star
    • …
    corecore